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We present theoretical results for the backaction force noise and damping of a mechanical oscillator

whose position is measured by a mesoscopic conductor. Our scattering approach is applicable to a wide

class of systems; in particular, it may be used to describe point contact position detectors far from the

weak tunneling limit. We find that the backaction depends not only on the mechanical modulation of

transmission probabilities, but also on the modulation of scattering phases, even in the absence of a

magnetic field. We illustrate our general approach with several simple examples, and use it to calculate the

backaction for a movable, Au atomic point contact modeled by ab initio density functional theory.

DOI: 10.1103/PhysRevLett.105.217206 PACS numbers: 85.85.+j, 72.70.+m, 73.23.�b

Quantum mechanics requires that any detector used to
measure an object’s position unavoidably exerts a back-
action force, imposing a fundamental limit on continuous
position detection [1,2]. Recent experiments with nano-
electromechanical systems (NEMS) have come remark-
ably close to realizing this limit by using quantum
electronic conductors as position detectors of nanome-
chanical oscillators [3–5]. In these systems, position de-
tection is achieved using the influence of the mechanics on
the current through the conductor; thus, it is natural to
associate backaction with the position sensitivity of the
electron transmission probability. This is indeed the picture
that emerges from theoretical studies in the limit of weak
tunneling [6–8]; however, several recent experiments are
far from this limit [5,9–11], and it is not clear that the weak
tunneling results apply.

In this Letter, we study the backaction of a mesoscopic
position detector using a general noninteracting scattering
approach that is not limited to the weak tunneling limit.
Scattering theory has been used extensively to study vari-
ous aspects of mesoscopic conductors, and we adapt it here
to study the backaction heating and damping of a mechani-
cal oscillator coupled to a conductor. Surprisingly, we find
that backaction arises not only from transmission proba-
bilities, but also from the position sensitivity of scattering
phases, and we present several simple but illustrative ex-
amples where the phases play a pronounced role. We em-
phasize that these phases may be important despite intact
time reversal symmetry, which we assume throughout,
unlike Aharanov-Bohm phases due to a magnetic field [8].
Finally, we apply our general results to calculate the back-
action from an atomic point contact (APC) between Au
electrodes, using a scattering matrix obtained from density
functional theory (DFT).

Our approach significantly extends the seminal work of
Yurke and Kochanski, who first considered force noise in a
tunnel junction using a scattering approach [12]. Unlike
their work, which is limited to particular scattering poten-
tials, we rely only on general properties of the scattering

matrix. As a result, we can describe a wide class of
systems, including arbitrary scattering potentials, various
forms of electromechanical coupling, and multichannel
scatterers. Moreover, we calculate not only the backaction
force noise, but also the backaction damping, which is
important in experiments (e.g. it is the basis of backaction
cooling [4]) and up to now has not been dealt with in the
scattering approach.
Scattering approach.—We consider a two-terminal de-

vice consisting of a coherent scattering region coupled to
left and right leads, each of which supports N transverse
modes. Electrons are scattered by a potential Uð~re; xÞ,
where ~re ¼ ðxe; ye; zeÞ is the electron position, and the
potential depends on the position x of a mechanical oscil-
lator. Incoming and outgoing waves are related by the
scattering matrix sðxÞ, which depends on x through
Uð~re; xÞ. We will show that a knowledge of s and @s=@x
is sufficient to calculate the backaction.
For the usual experimental regime of weak electrome-

chanical coupling, the change in the electronic potential
due to small changes in x is generally linear and may be

written H int ¼ �xF̂, where the force on the oscillator is

F̂ ¼ �R
d~re�̂ð ~reÞ@Uð~re; xÞ=@x, and �̂ð ~reÞ is the electron

density operator. By relating small and slow changes in the
potential, Uð~re; xÞ, to the parametric derivative of the scat-

tering matrix [13–15], we can express F̂ in the scattering
state basis as

F̂ ¼ X
��

Z
d�

Z
d�0ây�ð�ÞW��ð�; �0Þâ�ð�0Þ; (1)

where â�ð�Þ destroys a scattering state of energy � incident
in the lead and transverse mode indexed by �, and

Wð�; �Þ ¼ 1

2�i

�
syð�; xÞ@sð�; xÞ

@x

�
x¼0

: (2)

We require only the diagonal-in-energy part of W since

we focus on the zero frequency noise properties of F̂; this
is sufficient for the experimentally relevant case when the
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oscillator period is much longer than time scales in the
conductor. Derivatives of the scattering matrix similar to
Eq. (2) are familiar from studies of charge noise [16] and
parametric pumping [17]. Here we use the parametric
derivative with respect to x to calculate the backaction on
the oscillator directly in terms of the scattering matrix,
without the need for detailed knowledge of Uð~re; xÞ and
�̂ð~reÞ in the scattering region. In the following we work to
lowest order in H int, valid for weak coupling.

Fluctuations of the backaction force cause momentum
diffusion and heating of the oscillator. Heating is deter-
mined by the classical, frequency-symmetric part of the
backaction force noise, �SF½!� ¼ ðSF½!� þ SF½�!�Þ=2,
where the quantum noise spectral density is SF½!� ¼R
dtei!thF̂ðtÞF̂ð0Þi and averages are taken with respect to

the uncoupled conductor [18]. These averages are easily
taken using Eq. (1), and the backaction heating is directly
determined by W. The zero frequency force noise is
(kB ¼ 1, �SF � �SF½0�)

�S F ¼ 2�@
X
��

Z
d� trfW��W��gf�ð1� f�Þ; (3)

where the trace is over transverse modes, assumed to be the
same in both leads, and the matrixes W�� are the N � N

blocks of W in Eq. (2), which may be � dependent. The

Fermi functions are f� ¼ ð1þ eð����Þ=TelÞ�1, where �� is
the chemical potential in lead � and Tel is the electronic
temperature.

In addition to heating, the oscillator also experiences
backaction damping as a result of energy exchange with
the conductor. The damping rate is given by the quantum,
asymmetric-in-frequency part of the force noise, �½!� ¼
ðSF½!� � SF½�!�Þ=2M@!, where M is the oscillator
mass. Taking the ! ! 0 limit, we find

� ¼ 2�@

M

X
��

Z
d� trfW��W��gf�

�
�@f�

@�

�
: (4)

By considering the ratio of �SF½!� to �½!�, one can asso-
ciate a frequency-dependent effective temperature Teff½!�
with the backaction; this amounts to using the standard
fluctuation-dissipation relation to define the effective tem-
perature at each frequency from the system’s force noise
and damping [2,6,18]. Teff½!� characterizes the conductor
as an effective thermal environment. In the ! ! 0 limit,
the relation is simply Teff � �SF=2M�. If backaction domi-
nates over intrinsic sources of dissipation, Teff corresponds
to the physical temperature of the oscillator.

Single channel.—We first consider the case of single-
channel leads. For simplicity, we also focus on the limit of
small applied bias, ignoring the possible energy depen-
dence of s. We assume time reversal symmetry (i.e. no
magnetic field), but allow for broken left-right inversion
symmetry. In this case the scattering matrix may be
parametrized as

sð�; xÞ ¼ ei�
ffiffiffiffiffiffi
R

p
ei	 i

ffiffiffiffiffi
T

p
i
ffiffiffiffiffi
T

p ffiffiffiffiffiffi
R

p
e�i	

 !
; (5)

whereT (R ¼ 1�T ) is the transmission (reflection) pro-
bability,� is the overall scattering phase, and 	 parametrizes
broken inversion symmetry; i.e. 	 ¼ 0 for an inversion-
symmetric conductor. In general, all of the scattering
parameters depend on x through the potential, Uð ~re; xÞ.
Inserting Eq. (5) into Eq. (3) we obtain the symmetrized

force noise for a single channel,

�S F ¼ @

2�

ð@T =@xÞ2
4RT

eV

�
ð1þRT�	Þ coth

�
eV

2Tel

�

þ ð�� þR2�	Þ 2Tel

eV

�
; (6)

where V is the bias, and the phase terms enter as

�
 ¼ 4RT
�
@
=@x

@T =@x

�
2
; (7)

for 
 ¼ �, 	. In the limit eV � Tel, the first term (inde-
pendent of �� and �	) in Eq. (6) represents the expected,

quantum-limited backaction of our position detector; it is
simply the sensitivity of a position measurement made by
monitoring the current, and reflects the fact that a stronger
measurement leads to increased backaction. This term
scales as the square of the measurement gain, �IF/
@T =@x, and inversely with the shot noise in the current,
�SI ¼e2VRT =2�@; in the limit T � 1 it reproduces the
well-known result obtained from a tunnel Hamiltonian
calculation [6,7]. The second term in Eq. (6) is independent
of @T =@x and is thus not directly related to a measurement
of the current. Instead, it results from the oscillator’s modu-
lation of the phase 	. This phase contribution to �SF is
proportional to RT and thus vanishes when T � 1. The
remaining two terms ( / Tel=eV) are also independent of
@T =@x and represent additional thermal noise at finite
Tel=eV.
The damping for a single channel is

� ¼ @

2�M

ð@T =@xÞ2
4RT

ð1þ �� þR�	Þ: (8)

In the small bias limit,� is strictly positive and independent
of Tel. Similar to �SF, the first term in Eq. (8) is the back-
action associated with a measurement of the current and
reduces to the tunnel Hamiltonian result in the limit T �
1.More interestingly, the second and third terms correspond
to corrections due to scattering phases; unlike �SF, these
phase contributions to � are present even for a symmetric
detector and, as wewill see, do not necessarily vanish in the
weak tunneling limit. The overall phase � is directly con-
nected to the density of states in the scattering region via the
Friedel sum rule [19]. An x-dependent � implies that the
mechanical oscillator can change the scattering-induced
electronic density of states; this means that the total elec-
tronic free energy becomes x dependent, resulting in a force
whose quantum noise contributes to damping.
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Equations (6) and (8) show that the backaction proper-
ties of a general conductor cannot simply be extrapolated
from the weak tunneling limit; scattering phases play a role
in both the heating and damping of the oscillator. Further,
the phases can have a dramatic influence on the effective
backaction temperature Teff of the detector. For a single
channel, using Eqs. (6) and (8), in the limit Tel � eV
we find

Teff ¼ eV

2

�
1þRT�	

1þ �� þR�	

�
: (9)

If the mechanical motion does not modify the scattering
phases, then we simply obtain the tunnel Hamiltonian
result [6,7], Teff ¼ eV=2, independent of T . However, in
the more general case including the backaction from scat-
tering phases, Teff is not solely determined by the voltage.
The phase corrections always decrease the effective tem-
perature; they arise from the diagonal elements of W,
which correspond to transitions between scattering states
in the same lead. At Tel ¼ 0 such transitions can only occur
if an electron absorbs energy, because the scattering states
in each lead are filled up to the Fermi level. Thus, phase
corrections lead to increased absorption of energy from the
oscillator, lowering Teff . Including a nonzero lead tempera-
ture Tel, one finds that Teff can be lowered to a minimum
value of Tel; as Tel � eV, this could still be quite useful.

Square potential barrier.—To demonstrate that backac-
tion from scattering phases plays a role even in the simplest
scattering model, we calculate the backaction for a one-
dimensional symmetric square barrier potential whose
width depends on the oscillator position. The force noise
for this model was first considered in Ref. [12]; our general
method further provides � and Teff and allows us to iden-
tify the role of scattering phases. Incoming electrons of
wave vector k and energy � are scattered in one dimension
by a square potential barrier of height U0 and width w ¼
Lþ x. The inverse decay length of the wave function

under the barrier is � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meðU0 � EÞp

=@. It is straightfor-
ward to find T and � as functions of U0 and w, and 	 ¼ 0
due to inversion symmetry. We obtain

�� ¼
�
1þ 4k2�2

ðk2 � �2Þ2T
��1

; (10)

and the phase terms become important when T � 1. For
a high but narrow barrier (U0 � �, �L � 1), we find
[via Eq. (9)] that Teff may be reduced by up to a factor of
2 compared to the tunnel Hamiltonian result of eV=2. For
a low barrier (U0 � �), we find Teff ! Tel.

Resonant level model.—We now apply our general re-
sults to a prototypical resonant level model (RLM), where
a single electronic level of energy �d is connected to the
left (right) lead via the tunneling rate �L (�R). If �d
depends on the position of a mechanical oscillator
[see Fig. 1(a)], one has the electromechanical analog of a
dispersively coupled optomechanical system [20], and a

simple model of quantum-dot–based NEMS studied in
recent experiments [21,22]. Beginning from the scattering

matrix for the RLM, s�� ¼ �� � i@
ffiffiffiffiffiffiffiffiffiffiffiffi
����

q
=ð�� �d þ

i@�=2Þ, where � ¼ �L þ �R, and assuming linear cou-
pling, we obtain � / ð�=�L�RÞ2T 2 [23]. We also find
�� ¼ 1þR�	, independent of the tunneling rates and

the detuning of the incident electron energy � from �d.
Comparing with Eq. (8), this implies that the phases play a
crucial role: the x dependence of the overall scattering
phase � always accounts for half of the damping, as seen
in Fig. 1(b). Further, in the limit of asymmetric tunneling
rates we find R�	 � 1, and the damping is almost en-
tirely due to the combined � and 	. Also striking is the
cotunneling limit, where the detuning is large compared to
the level broadening, i.e. j�� �dj � @�. In this limit
tunneling is suppressed, T � 1, and the level charge
only fluctuates virtually; as a result, one might expect
that the system is equivalent to a single junction in the
weak tunneling limit, and that � should be given by the
tunnel Hamiltonian result, i.e., the first term in Eq. (8).
However, this is not the case: due to phase corrections, the
damping is twice the tunnel Hamiltonian result [see the
inset of Fig. 1(b)]. This shows that the phases can play a
role even when T is small. Note that backaction in this
model was recently studied theoretically using a path in-
tegral approach [24,25], although backaction due to phases
was not discussed.
Our general theory also allows us to consider variations

of the above RLM, where the mechanical position modu-
lates the tunneling rates �L and �R. This is the electrome-
chanical analog of a dissipatively coupled optomechanical
system [26], and could be achieved experimentally using a
quantum dot coupled to two leads via tunnel junctions,
with the tunneling rates modified by an on-board [5] or
off-board [10] mechanical oscillator. First, we consider
a setup where only the left tunneling rate is x dependent
[see Figs. 1(c) and 1(d)]. In this case, interference between

FIG. 1 (color online). Schematic setups and backaction damp-
ing for RLM with dispersive (a,b), dissipative (c,d), and shuttle
(e,f) mechanical coupling. In all plots, the full backaction damp-
ing (red solid line) and the damping without phase corrections
(blue dashed line) are shown, with T (black dotted line) also
shown for reference. We took �Lð0Þ ¼ �Rð0Þ.
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resonant charge fluctuations (on the level) and nonresonant
charge fluctuations (in the leads) results in a Fano line
shape and suppression of � at zero detuning [23], similar
to the optomechanical case [26]. Second, we consider
mechanical coupling to both tunneling rates with opposite
sign, corresponding to a quantum shuttle [see Figs. 1(e)
and 1(f)]. Here we find � / ð�=�L�RÞ2T ; moreover, all of
the damping is due to the scattering phases, since (for �L ¼
�R) the transmission has no linear dependence on x [23].

Atomistic model.—While the above examples show that
phases contribute to backaction in simple model potentials,
our approach allows us to investigate phase contributions
in fully atomistic calculations of mesoscopic conductors.
We demonstrate this by applying our theory to an APC
using the scattering matrix obtained from DFT [27]. We
model the APC as a single-atom constriction in a 5� 5
atom Au quantum wire (see Fig. 2), and take x to modify
the gap size of the APC to Lþ x. This geometry is moti-
vated by recent experimental setups using an APC [5] or a
scanning tunneling microscope [9] with one mechanically
compliant electrode. We approximate the surface electrode
of experiments by the flat 5� 5 edge of the wire on the
right; this is justified since the transport properties of the
APC are expected to be dominated by the few atoms
closest to the tip. We find 11 scattering channels contrib-
uting to transport, consistent with recent ab initio studies of
similar Au wires [28]. After obtaining s and @s=@x [23],
we calculate the backaction using Eqs. (3) and (4), assum-
ing Tel � eV. We find that phase corrections are important
when the APC transmission deviates from the weak tun-
neling limit; it leads to a significant reduction in Teff from
the tunnel Hamiltonian result of eV=2, as seen in Fig. 2.
While transmission properties are often studied using DFT,
an important feature of our calculation is our explicit use of
the scattering phases obtained from an atomistic calcula-
tion of a quantum electronic device.

Conclusions.—We have presented a scattering approach
to backaction in NEMS and demonstrated the importance
of backaction from scattering phases. This work is particu-
larly relevant to NEMS based on quantum or atomic point
contacts which are often far from the weak tunneling limit.
Our results may also be easily extended to describe strong
electromechanical coupling in the low oscillator frequency
limit, by making an adiabatic approximation such that the

noise spectra of F̂ effectively become x dependent [18].
This work was supported by the NSERC, FQRNT, and
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