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We demonstrate that Majorana fermions exist in edges of systems and in a vortex core even for

superconductors with nodal excitations such as the d-wave pairing state under a particular but realistic

condition in the case with an antisymmetric spin-orbit interaction and a nonzero magnetic field below the

upper critical field. We clarify that the Majorana fermion state is topologically protected in spite of the

presence of bulk gapless nodal excitations, because of the existence of a nontrivial topological number.

Our finding drastically enlarges target systems where we can explore the Majorana fermion state.
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Introduction.—Majorana fermions (MFs) realized as vor-
tex core bound states of superconducting condensates have
been attracting considerable interest in connection with the
application to quantum computation [1–3]. Such vortices
obey the non-Abelian statistics [4–9], and because of this
distinct feature, they are utilized as decoherence-free qubits.
The realization of Majorana bound states has been discussed
for the quantum Hall effect systems [4–7], pþ ip super-
conductors [7–11], superconductor-topological-insulator
interfaces [12,13], and s-wave Rashba superconductors
[14–16]. The origin of MFs acting as non-Abelian anyons
is intimately related to the existence of the non-Abelian
topological order, which yields the fractionalization of qua-
siparticles [17,18]. Generally, topological order is charac-
terized by a nontrivial topological number associated with
the global structure of the Hilbert space and, hence, the
existence of a nonzero energy gap which separates the
topological ground state and nontopological excited states
stabilizes the topological order.

In this Letter, we propose an example of systems real-
izing MFs, which is unusual in the above-mentioned sense
of topological stability but frequently found in real mate-
rials: MF states realized in superconductors with nodal
excitations such as the d-wave pairing state. More pre-
cisely, MFs exist in edges of systems and in a vortex core
for nodal superconductors, provided that there are both an
antisymmetric spin-orbit interaction and a nonzero mag-
netic field below the upper critical fieldHc2 and that, when
the magnetic field is switched off, the Fermi level is located
close to odd numbers of time-reversal invariant k points in
the Brillouin zone (BZ) at which the superconducting gap
vanishes because of the symmetry requirement. This pro-
posal implies that the non-Abelian topological order coex-
ists with gapless excitations in our system. One may
wonder how the topological stability is ensured in the
presence of nontopological gapless excitations. In fact,
the Chern number is not well-defined in our nodal system.
Nevertheless, we clarify that the MF state is, to some

extent, stable against interactions with nodal excitations
and with impurities because of the existence of a topologi-
cal number which is well-defined even for gapless super-
conductors. Note that many classes of noncentrosymmetric
(NCS) superconductors, such as CePt3Si, CeRhSi3,
CeIrSi3, and Li2Pt3B, are known to possess superconduct-
ing gap nodes [19–23]. In these systems, some of time-
reversal invariant k points reside close to the Fermi level
[24]. Our finding indicates that if the total number of these
k points is odd, and the superconducting gap vanishes (or,
at least, becomes sufficiently small) at these points, stable
MF modes appear under applied magnetic fields. We ex-
pect that such MF states may be realized in large classes of
NCS superconductor with gap nodes.
Majorana fermions in edges and in a vortex core.—To

be concrete, we consider a two-dimensional d-wave
superconductor with the Rashba spin-orbit interaction,
though the following argument is basically applicable to
any NCS nodal superconductors. The Hamiltonian is given

by H ¼ 1
2

P
kc

y
kH ðkÞc k, with

H ðkÞ¼ �k�h�zþgk �� i�k�y

�i�k�y ��kþh�zþgk ���
� �

; (1)

where c y
k ¼ ðcyk"; cyk#; c�k"; c�k#Þ, �k ¼ �2tðcoskx þ

coskyÞ ��, gk ¼ 2�ðsinky;� sinkx; 0Þ, k ¼ ðkx; kyÞ,
and � ¼ ð�x; �y; �zÞ are the Pauli matrices. h ¼ �BHz

is a Zeeman magnetic field. The gap function is the
dx2�y2-wave type, �k ¼ �0ðcoskx � coskyÞ, or the

dxy-wave type,�k ¼ �0 sinkx sinky. We neglect the orbital

effect of the magnetic field for a while since it does not
change our results qualitatively, as long as Hz < Hc2.
We first demonstrate that there is a gapless chiral MF

mode on the edge of the system. For this purpose, we
numerically calculate the energy spectrum of the system
with the open boundary condition imposed for the x axis
and the periodic boundary condition for the y axis. The
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results are shown in Fig. 1. In the case of the dx2�y2-wave

pairing, when the condition �4t��< h<�� is satis-
fied, a gapless edge mode appears for ky � 0 [Fig. 1(a)].

Note that this edge mode is isolated from the continuum
of gapless excitations from the gap nodes with the finite
Fermi momentum. Because of the particle-hole symmetry
of the Hamiltonian, the existence of one zero energy
mode for ky � 0 implies that it is a MF mode. The above

condition implies that when the Fermi level crosses k points
close to time-reversal invariant points in the BZ in
the absence of the magnetic field, say, the � point, i.e.,
� ¼ �4t, the Majorana edgemode appears for any nonzero
Hz below Hc2. This property makes a sharp contrast to the
s-wave pairing state considered in Refs. [14–16], for which
a large magnetic field satisfying h > � is required to realize
the topological order and MFs. This is because the d-wave
gap function vanishes at k� 0, fulfilling the condition h >
�k�0 � 0. As a result, the realization of MFs in the d-wave
pairing state is much more feasible than that in the s-wave
pairing state, which may be seriously affected by the orbital
depairing effect due to the large magnetic field h > �.

In the case of the dxy-wave pairing, the zero energy edge

mode at ky � 0 merges into nodal excitations, and, thus, it

is difficult to identify the Majorana mode from the numeri-
cal result [Fig. 1(d)]. However, we deduce that there is still
a Majorana mode at ky � 0 also for this case, because of

the topological argument which will be presented later, as

long as L is sufficiently large. (Also see the argument on
the stability below.)
The existence of the chiral MF edge mode implies that

there is a MF mode in a vortex core of the superconducting
condensate when the vorticity n is odd. In the case of the
d-wave pairing, the analysis of the vortex core state is
cumbersome, in contrast to the s-wave pairing or the pþ
ip-wave pairing states, since the gap function of the
d-wave state is not an eigenstate of the orbital angular
momentum, and, moreover, there is no truly localized
bound state in a vortex core because of interactions
with delocalized nodal excitations [25,26]. However, as
in the case of the s-wave Rashba superconductor [14,27],
we can construct the Majorana zero energy mode
from quasiparticles with k� 0 at least in some param-
eter regions. The eigenfunction for this zero energy

state is �T ¼ ðu"; u#; u�" ; u�# Þ, with u" ¼ iei½ðn�1Þ=2��fðrÞ,
u# ¼ �iei½ðnþ1Þ=2��fðrÞ, and fðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h=��r
p

e�ðh=2�Þr for

large r. Here n is odd. In the d-wave pairing state, in
addition to this zero energy mode, there are four gapless
extended states outside of the vortex core which stem from
the four gap nodes [28,29]. Since the total number of the
zero energy mode is odd, one Majorana mode survives.
Thus, we have a zero energy MF mode in the vortex core.
Stability of Majorana fermions.—The next important

question is whether MFs found above are stable or not
against weak perturbations such as impurities even in the
presence of gapless nodal excitations. As will be shown
later, there is indeed a topological protection mechanism in
spite of the existence of bulk gapless excitations. Before
discussing the topological mechanism, however, we here
present a heuristic argument on this issue to grasp an
intuitive physical picture. Generally, impurity scattering
affects the superconducting state with gap nodes. We con-
sider only the case of weak disorder for which the super-
conducting gap is not much reduced. We first consider the
case of the dx2�y2-wave pairing. In a semi-infinite system

with an open boundary, there is only one chiral Majorana
edge mode, while there are four gapless modes which stem
from four nodes of the dx2�y2-wave superconducting gap.

To generate an energy gap in the Majorana spectrum, we
need even numbers of Majorana modes which are paired
into complex fermions. Thus, for this geometry, the chiral
Majorana edge mode is stable against interactions with
nodal excitations and also against impurity scattering.
However, this argument is not applicable to the case with
two open boundaries at the opposite sides of the system. In
this case, two counterpropagating chiral Majorana modes
reside in the two opposite edges, as depicted in Fig. 1(c).
Interactions between bulk gapless nodal excitations and
two chiral Majorana modes may give rise to long-range
tunneling between two Majorana modes. We note that such
long-range tunneling via nodal excitations does not occur
in a clean system because of the mismatch of the Fermi
momenta of nodal excitations kF � 0 and that of the chiral

FIG. 1 (color online). Energy spectra for systems with open
boundaries for the x direction and the periodic boundary condi-
tion for the y direction. � ¼ �4t, � ¼ 0:5t, �0 ¼ t, and h ¼ 2t.
(a),(b) dx2�y2 -wave pairing. (d),(e) dxy-wave pairing. The dis-

tance between two edges is L ¼ 90 [(a) and (d)] and L ¼ 30 [(b)
and (e)]. In (a) and (d), chiral gapless edge modes at x ¼ 0
and x ¼ L are depicted, respectively, in green and red curves.
(c),(f) Chiral edge modes counterpropagating on two opposite
edges for dx2�y2 -wave pairing (c) and dxy-wave pairing (f).
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Majorana modes with which kF � 0 for the dx2�y2-wave

pairing. When there are impurity potentials, a Majorana
mode and nodal excitations on an edge can be hybridized
via impurity scattering, leading to the long-range tunneling
of the MFs in two opposite edges: H tun ¼ tðr0 �
r00Þi�ð0; y0Þ�ðL; y00Þ, where �ðx; yÞ is a MF operator, r0 ¼
ð0; y0Þ and r00 ¼ ðL; y00Þ are the positions of impurities, and

the tunneling amplitude tðr0 � r 0
0Þ � 1=jr0 � r00j for a large

jr0 � r00j. We introduce a complex fermion operator:	ðyÞ ¼
1
2 ½�ð0; yÞ þ i�ðL;�yþ y0 þ y00Þ�. Then, the Hamiltonian

for two chiral Majorana edge states can be rewritten into
that of the 1D chiral Dirac fermion [30]: H edge ¼
�iv

R
dy	yðyÞ@y	ðyÞ. The long-range tunneling term is

also expressed as H tun ¼ t0½2	yðy0Þ	ðy0Þ � 1�. Because
of the chiral character of the Dirac fermion 	, this tunneling
term raises only forward scattering, the effect of which is
merely to shift the chemical potential. As a result, the chiral
Dirac fermion is still gapless. Going back to the Majorana
fields, we conclude that the two chiral Majorana edge modes
are stable against sufficiently dilute impurities. In contrast, in
the case of thedxy-wave pairing, the long-range tunnelingvia

nodal excitations exists even in the absence of impurities, as
depicted inFig. 1(f). In this case, an energy gap opens around
ky � 0, and the Majorana mode disappears even for a rela-

tively large value of L, for which the Majorana mode still
exists for the dx2�y2-wave pairing [see Figs. 1(b) and 1(e)].

We now consider the stability of the Majorana mode in a
vortex core. In addition to the localized zero energy
Majorana solution, there are also delocalized states caused
by gapless nodal excitations. When there are multiple
vortices in the system under consideration, these delocal-
ized states raise long-range tunneling between spatially
separated vortices, which may destroy the zero energy
Majorana mode. In the system with odd numbers of
vortices, one Majorana mode in a vortex core survives.
However, in the case with even numbers of vortices, the
Majorana mode disappears unless they are separated
enough from each other.

Topological order and topological protection of
Majorana fermions.—The above consideration strongly
implies that there is a topological order which ensures
the stability of MF modes even for nodal superconductors
with bulk gapless excitations. However, in sharp contrast to
a gapful topological order, the bulk Chern number 
Ch is
not well-defined for our gapless system. Nevertheless, we
clarify here that the parity of the Chern number ð�1Þ
Ch is
well-defined even for nodal superconductors. The parity of
the Chern number ensures the stability of the topological
order in our system.

Let us first try to define the Chern number in our gapless
system. The simplest way to do this is to introduce a small
perturbation eliminating all nodes (i.e., gapless points) in
the spectrum. For instance, adding a small idxy term in the

gap function, we can easily remove all the nodes in our
dx2�y2 superconductor. After removing the nodal points,

the Chern number can be evaluated in the standard manner.
This procedure, however, does not work well after all. The
problem is that the value of the Chern number depends on
the perturbation we choose. As a result, one cannot have a
unique definition of the Chern number for gapless systems.
On the other hand, we find that this procedure does

define the parity of the Chern number uniquely. From the
particle-hole symmetry, the parity of the Chern number is
recast into

ð�1Þ
Ch ¼ exp

�
i
Z �2

�1

dkiAiðkÞ þ i
Z �4

�3

dkiAiðkÞ
�
; (2)

where AiðkÞ is the ‘‘gauge field’’ defined by the bulk band
wave function junðkÞi, AiðkÞ ¼ i

P
nhunðkÞj@kiunðkÞi, and

�i is the time-reversal invariant k points, �i¼1;2;3;4 ¼ 0; 0ð Þ,
ð�; 0Þ, ð0; �Þ, ð�;�Þ [31]. Then, for the Hamiltonian (1),
we can show that

ð�1Þ
Ch ¼ Y
i¼1;2;3;4

sgn½�2�i
þ�2

�i
� h2�; (3)

irrespective of the perturbation (such as idxy term) we

choose [32]. This means that we have a unique value of
the parity in the limit of idxy ! 0; i.e., the parity of the

Chern number ð�1Þ
Ch is well-defined even for nodal
superconductors, although the Chern number 
Ch itself
is not. The parity of the Chern number characterizes
the topological phase in nodal superconductors. For
ð�1Þ
Ch ¼ �1, there exists an odd number of topologically
stable MFs in the edges and in a vortex core for nodal
superconductors. For example, for the model (1) with
�4t��< h<��, we obtain ð�1Þ
Ch ¼ �1 from (3).
Thus, the existence of the gapless Majorana edge mode in
Fig. 1 is characterized by the odd parity ð�1Þ
Ch ¼ �1. On
the other hand, for ð�1Þ
Ch ¼ 1, there is no topologically
stable MF. We emphasize that the formula (3) is applicable
only to systems with particle-hole symmetry, and, thus, the
topological order in gapless systems is specific to topo-
logical superconducting states.
In addition to the parity of the Chern number, one can

consider another topological number dubbed the 1D Z2

invariant [31]. The 1D Z2 invariant ð�1Þ
½Cij� is introduced
as a line integral along a specific time-reversal invariant path
Cij passing through�i and�j. In a similarmanner above, it is

shown that the 1D Z2 invariant is well-defined even for our

nodal superconductor, andweobtain ð�1Þ
½Cij� ¼ sgn½�2�i
þ

�2
�i
� h2�sgn½�2�j

þ �2
�j
� h2�. For the model (1) with

�4t��< h<��, this formula yields ð�1Þ
½C12� ¼ �1
for both dx2�y2 and dxy superconductors. From the bulk-edge

correspondence, this Z2 invariant determines the location
of the Majorana edge fermions at ky � 0, as illustrated in

Figs. 1(a), 1(b), and 1(d). Since the 1D Z2 invariant is
associated with a local structure in the BZ, its nontriviality
does not directly lead to the topological stability. However,
the 1D Z2 invariant is useful for identifying the location of

PRL 105, 217001 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 NOVEMBER 2010

217001-3



zero energy Majorana edge modes, as shown above. On the
other hand, the odd parity of the Chern number introduced
above definitely characterizes the global nontrivial topology
of the Hilbert space, ensuring the topological protection
mechanism of Majorana modes.

The above consideration can be straightforwardly gen-
eralized to a general multiband nodal superconductor. In
this case, when the superconducting gap vanishes or be-
comes sufficiently small at the time-reversal invariant
k points, �i, the parity of the Chern number, is evaluated
as ð�1Þ
Ch ¼ Q

	;i¼1;2;3;4sgn½E	ð�iÞ�, where E	ðkÞ is the

normal dispersion of the superconductor. The index
	 specifies an energy band including the spin degrees of
freedom. Therefore, when the Fermi level is located close
to odd numbers of time-reversal invariant k points, and the
superconducting gap vanishes at these points because of
the symmetry requirement, the NCS nodal superconductor
possesses topologically protected MF modes under an
applied small magnetic field.

Experimental detection of Majorana fermions.—For the
experimental detection of MFs in nodal superconductors,
one promising approach is to exploit an interferometry
measurement proposed for a superconductor-topological-
insulator junction in Refs. [34,35]. We consider a setup
similar to those proposals but with a difference that, instead
of a superconductor-topological-insulator junction, a bulk
d-wave Rashba superconductor is used. The contribution
from nodal excitations to the conductance in the d-wave
pairing state vanishes like �T at sufficiently low tempera-
tures, and, thus, the current is dominated by that carried by
two Majorana edge modes. The dependence of the con-
ductance on the parity of vorticity inside the superconduc-
tor signifies clearly the MF contributions [34,35]. Possible
candidates of our proposal are heavy fermion NCS super-
conductors CeRhSi3 and CeIrSi3, in which the Fermi level
is close to time-reversal invariant k points atK points in the
BZ [20,21,24]. Although there are two K points, one of
them can be moved away from the Fermi level by applying
an uniaxial strain in the x (or y) direction. Then, the non-
Abelian topological order is realized. The non-Abelian
nodal superconductor is also realizable in an interface
between a centrosymmetric nodal superconductor such as
high-Tc cuprates and a semiconductor, as considered in the
case of the s-wave pairing state by Sau et al. and Alicea
[15,16]. In such a system, because of the considerably large
superconducting gap, the experimental detection of
Majorana modes may be easier.

Summary.—We have demonstrated that even in nodal
superconductors, MF modes, which are topologically pro-
tected against weak perturbations and lead to the non-
Abelian statistics, are realized under a certain realistic
condition, in spite of the existence of bulk gapless nodal
excitations. Our results establish a concept of a gapless

topological phase and open the possibility of detecting
MFs in various NCS superconductors with gap nodes.
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