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We study the double-exchange model at half-filling with competing superexchange interactions on a

triangular lattice, combining exact diagonalization and Monte Carlo methods. We find that in between the

expected itinerant ferromagnetic and 120� Yafet-Kittel phases a robust scalar-chiral, insulating spin state

emerges. At finite temperatures the ferromagnet-scalar-chiral quantum critical point is characterized by

anomalous bad-metal behavior in charge transport as observed in frustrated itinerant magnets R2Mo2O7.
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Geometric frustration is encountered in numerous mag-
netic condensed matter systems and gives rise to a variety
of fascinating magnetic phases, such as spin-glass, spin-
liquid, and spin-ice [1,2]. Traditionally, geometrically frus-
trated magnetism is studied in the context of wide band gap
materials with localized spins. Recently, the interest broad-
ened to frustrated magnets with metallic character such as
Tl2Mn2O7 andR2Mo2O7 (R denotes a rare earth ion) [3–6].
In these metallic systems, frustration in the magnetic sector
has a strong impact on charge dynamics, often resulting in
heavy-fermion type behavior in transport [7–10].

Besides being of geometric origin, magnetic frustrations
can also be due to a direct competition between ferromag-
netic (FM) and antiferromagnetic (AFM) interactions.
Perhaps the most elementary example is FM double-
exchange (DE) competing with AFM superexchange
(SE) [11]. Magnetic competition of this kind has been
studied extensively on hyper-cubic lattices in the context
of the colossal magnetoresistance manganites, where
depending on carrier concentration the competing interac-
tions can induce new forms of magnetic order or phase-
separation [12–14]. Competing FM and AFM interactions
can in principle also lead to noncollinear and even non-
coplanar magnetic states, which are raising interest in the
rapidly emerging and seemingly disparate fields of multi-
ferroics and topological insulators [15–17].

In an interesting class of materials both types of frus-
trations—geometric frustration and competing FM and
AFM interactions—are present and give rise to a set of
intriguing physical properties [18,19]. Recent experiments
on pyrochlore R2Mo2O7, for instance, show a transition
from a FM metallic to a spin-glass insulating state as R
changes from Nd to Dy [8]. This transition can be con-
trolled by external pressure. In the vicinity of the transition
an unusual diffusive metallic state appears, showing a
temperature-independent resistivity down to very low tem-
peratures [8]. A similar competition between FM and AFM
interactions is also relevant in the triangular-lattice systems
such as GdI2 and H-doped GdI2 [20–23].

In this Letter, we study in a wide temperature range the
double-exchange (DE) model on a triangular lattice in the

presence of frustrating AFM SE interactions. Three mag-
netically ordered ground states are present in the phase
diagram: an itinerant FM state on one end, the 120� Yafet-
Kittel phase on the other and an insulating (I) noncoplanar
scalar-chiral (SC) state in between [24]. Apparently the
SC-I state emerges from the competition between the two
metallic phases: FM and 120�. The FM and SC state are
separated by a quantum critical point (QCP), whereas the
transition from the SC to the 120� phase is first order in
nature. At finite temperature in the vicinity of the QCP the
system is characterized by a temperature-independent re-
sistivity and a linear inverse magnetic susceptibility, down
to very low temperatures. This bad metallic behavior
closely resembles the experimental observations on the
R2Mo2O7 compounds.
We consider the elementary one-band DE Hamiltonian

in the presence of antiferromagnetic SE interactions, in-
troduced by de Gennes in the 1960’s [11]—but now on a
frustrated triangular lattice. The full Hamiltonian is

H ¼ �X

hiji
tijðcyi cj þ H:c:Þ þ JS

X

hiji
Si � Sj; (1)

where ci and c
y
i are annihilation and creation operators for

electrons with spin parallel to the core spin Si. hiji denotes
the nearest neighbor (nn) pairs of sites on a triangular
lattice. JS denotes the strength of AF coupling between

nn core spins. tij ¼ t½cosð�i=2Þ cosð�j=2Þ þ sinð�i=2Þ�
sinð�j=2Þe�ið�i��jÞ� denote the hopping amplitudes which

depend on the polar and azimuthal angles f�i; �i; �j; �jg of
the nn core spins due to the double-exchange mechanism.
All energies are measured in units of the hopping parame-
ter t. The core spins are classical unit vectors and we focus
on the case of half-filling. The model Eq. (1) can be
obtained as the large coupling limit of the Kondo lattice

model (KLM), HKLM ¼ �t
P

hiji;�ðcyi�cj� þ H:c:Þ þ
JK

P
iSi � �i. The 1st term in Eq. (1) corresponds to jJKj !

1 in HKLM, and the lowest order correction (� t2=jJKj)
leads to the superexchange term. Furthermore, the
Hubbard model in the mean-field approximation has a
similar structure as the KLM with the local moments
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originating self-consistently within a single band [16].
Therefore, the results discussed in this paper also bear
relevance for the related models.

The only unbiased method to study this model is the
hybrid scheme involving exact diagonalization (ED) of the
fermion problem and Monte Carlo (MC) for classical core
spins [12]. In order to achieve larger lattice sizes, which are
essential for computing transport properties, we employ
the traveling cluster approximation (TCA) [25]. This
method is based on the observation that changes in total
energy induced by a change in classical variable on a site
can be estimated accurately by ED of a cluster Hamiltonian
around that site. The method has been benchmarked for
similar models, and has proved successful in the study of
manganites [25,26]. Most of the results in this work are
obtained on lattices with N ¼ 242 sites using a cluster size
Nc ¼ 62. Typically �104 MC steps are used for equilibra-
tion and a similar number of steps for computing thermal
averages on classical spin variables. For electronic proper-
ties, which still requires the ED of the full Hamiltonian,
�103 steps are used.

Figure 1(a) shows the calculated temperature depen-
dence of magnetization hmi ¼ hjð1=NÞPiSiji, where h. . .i
denotes thermal averaging. In the absence of JS we find a
FM ground state with a Curie temperature TC ¼ 0:15 as
inferred from the inflection point in the hmiðTÞ curve. Upon
increasing JS a monotonic reduction in TC is

observed while the ground state continues to be a saturated
FM. For JS ¼ 0:08 the ferromagnetism is destroyed by the
competing AFM interactions and we do not find any long-
range order in the ground state. In Fig. 1(b) we show the
inverse of magnetic susceptibility computed as � ¼
T�1ðhm2i � hmi2Þ. The inverse susceptibility ��1 clearly
follows a Curie-Weiss (CW) behavior (� / 1=ðT ��Þ)
above a characteristic temperature. The CW scale �,
which is obtained by extrapolating the linear
high-temperature behavior of ��1, is shown in the inset
in Fig. 1(b). � reduces monotonically and changes sign
upon increasing JS, indicating a change in the nature of
effective magnetic coupling from FM to AFM. A remark-
able similarity of these results with those obtained on a
pyrochlore lattice indicates that the essential physics is
determined by the frustrated nature of the lattice [19].
In order to identify nontrivial long-range ordered mag-

netic phases we compute the spin-structure factor, SðqÞ ¼
ð1=N2ÞPhSi � Sjieiq�ðri�rjÞ, where ri, rj are the real-space

location of spins Si, Sj. We show the ground state structure

factor along the symmetry directions in the momentum
space in Fig. 1(c). For JS ¼ 0:04, the SðqÞ has a single
peak at q ¼ ð0; 0Þ as expected for a FM state. In the regime
�� 0 (JS ¼ 0:08), the structure factor has no peak at any
q suggesting the absence of any long-range magnetic order.

For JS ¼ 0:16, we find peaks at q ¼ ð�;�= ffiffiffi
3

p Þ and (0,

2�=
ffiffiffi
3

p
). This corresponds to a four-sublattice ordered

state with a nonvanishing scalar chirality � ¼ PhSi � Sj �
Ski, where the sum is over indices forming a triangle taken
in the counterclockwise order. The onset temperature
Tsc for the SC state can be inferred from the
temperature dependence of �. This state has been dis-
cussed for the KLM within mean-field and variational
schemes, and has also been studied in the context of
high-Tc superconductors and recently the topological in-
sulators [16,17,27]. Here we show that the SC state is the
ground state for the model Hamiltonian Eq. (1) over a
window of phase space, and does not rely on Fermi surface
nesting [17]. Finally, as the JS becomes large the system
should approach towards the classical 120� state. This is
seen in the SðqÞ data for JS ¼ 0:44, where the peak is
located at q ¼ ð4�=3; 0Þ.
To investigate the repercussions of the competing mag-

netic interactions on electronic properties, we first focus on
the evolution with JS of the electronic density of states
(DOS), DðEÞ ¼ hPk�ðE� �kÞi, where we approximate
the � function by a Lorentzian of width 	: ��ðE� �kÞ �
	=½	2 þ ðE� �kÞ2�. The DOS for different temperatures
and values of JS is shown in Fig. 2. For small JS the DOS
does not show any drastic changes in shape upon reducing
T [see Fig. 2(a)] and an increase in bandwidth is found as
expected in a DE model. For JS ¼ 0:08 the DOS at low
temperatures is identical to that in the high-temperature
paramagnetic (PM) state [see Fig. 2(b)]. This unusual
behavior of the DOS is consistent with the facts that
(i) ��1 follows the Curie-Weiss behavior down to T ¼ 0,

0 0.1 0.2
T

0

0.5

1

<m>

J
s
=0

J
s
=0.02

J
s
=0.04

J
s
=0.06

J
s
=0.08

0 0.1 0.2 0.3
T

0

0.5

1/χ0 0.1J
S

-0.2

0

0.2

Θ

q
0

0.5

1

S(q)

J
s
=0.04

J
s
=0.08

J
s
=0.16

J
s
=0.44

(a) (b)

(0,0) (4π/3,0) (0,2π/31/2)(0,0)(π,π/31/2)

kx

ky

(c)

(0,0)
(4π/3,0)

(0,2π/31/2
)

FIG. 1 (color online). (a) Magnetization and (b) inverse mag-
netic susceptibility as a function of temperature for various
values of superexchange coupling JS. The inset in (b) shows
the Curie-Weiss scale extracted from the ��1ðTÞ as a function of
JS. (c) Spin-structure factor SðqÞ at T ¼ 0:001 along the princi-
pal symmetry directions in the momentum space for different
values of JS. The inset shows the Brillouin zone for a triangular
lattice and the path along which SðqÞ is plotted.
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and (ii) the spin-state remains disordered down to low
temperatures for JS ¼ 0:08 (see Fig. 1). For JS ¼ 0:16,
where the ground state has the peculiar noncoplanar order,
an energy gap appears in the DOS near EF at low tempera-
tures [see Fig. 2(c)]. This is consistent with the previous
discussions on this nontrivial state [16,17,27]. The effect of
this energy gap persists at higher temperatures in the form
of a pseudogap feature at EF. For larger JS an unusual flip
in the DOS shape with respect to the high temperature DOS
occurs near T ¼ 0:03 [see Fig. 2(d)] [28]. We find that this
flip in the shape of DOS is correlated with the rise in SðqÞ at
q ¼ ð4�=3; 0Þ and hence indicates a 120� state.

We compute the dc conductivity (�ð!Þj!!0) using the
Kubo-Greenwood formula and the exact eigenspectrum. In
this work we use �ð!0Þj!0¼0:03 as an approximation to dc

conductivity except for low-temperature metallic states,
where we make use of the conductivity sum rule [29,30].
A typical double-exchange behavior in resistivity is found
in cases where the ground state is FM [see Fig. 3(a)]. For
JS ¼ 0:08, which corresponds to a disordered magnetic
ground state as seen in SðqÞ, we find an unusually flat
resistivity. Further increase in JS leads to an insulating
behavior (d
=dT < 0) at low temperatures with a diverg-
ing resistivity at T � 0:01. For JS ¼ 0:30 one finds a sharp
reduction in 
 at a characteristic temperature associated
with the rise in SðqÞ at q ¼ ð4�=3; 0Þ. d
=dT remains
positive in the low-temperature regime until the system
enters the scalar-chiral insulating state near T ¼ 0:005.
Eventually, beyond JS ¼ 0:40 the ground state becomes
the 120� state.

In Fig. 3(b) we show resistivity as a function of JS for
low and high temperatures. This data can be compared with
the pressure dependence of resistivity reported in [8], since
application of external pressure alter the JS=t ratio and
tunes the system across the FM to PM transition. We find

the resistivity at high temperature increases monotonically,
whereas at low temperatures it shows a nonmonotonic
behavior. These features qualitatively agree with the ex-
perimental observation [8]. We also plot the DOS at EF as a
function of JS for low and high temperatures. Naively at
low temperatures one expects the resistivity to be inversely
related to the DOS at EF, since only the states near Fermi
level contribute. We indeed find this behavior at low tem-
peratures: the peak is 
 corresponds to a dip in DðEFÞ.
In Fig. 4(a) we plot the peak values in SðqÞ at various q

at T ¼ 0:005 as a function of JS. Peak in SðqÞ at q ¼ ð0; 0Þ
is a measure for ferromagnetism, that at q ¼ ð4�=3; 0Þ
corresponds to 120� state and simultaneous peaks at q ¼
ð�;�= ffiffiffi

3
p Þ and (0, 2�=

ffiffiffi
3

p
) indicates a SC state. Upon in-

creasing JS, Sð0; 0Þ vanishes before a rise in Sð�;�= ffiffiffi
3

p Þ
and Sð0; 2�= ffiffiffi

3
p Þ, indicating that the associated transition
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FIG. 2 (color online). Electronic density of states for varying
temperatures with (a) JS ¼ 0:04, (b) JS ¼ 0:08, (c) JS ¼ 0:16
and (d) JS ¼ 0:36. A Lorentzian broadening 	 ¼ 0:04 is used.
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at JS � 0:07 is quantum critical in nature. On the other
hand the transition between chiral and 120� state is 1st
order. The dashed curve shows the JS dependence of the
scalar chirality �. The results are summarized in a phase
diagram in Fig. 4(b). The ferromagnetic transition tem-
perature (TC) is inferred from the hmiðTÞ, the onset of
pseudogap behavior is determined by directly looking at
the DOS at various temperatures, and the transition to the
120� state is determined from the T dependence of the SðqÞ
at q ¼ ð4�=3; 0Þ. The absolute value j�j of the Curie-
Weiss temperature is plotted as an estimate of the effective
magnetic interaction in the system. The FM scale closely
follows the value of�, indicating the unfrustrated nature of
the system in this regime. In the intermediate-JS regime the
ground state is SC-I and a pseudogap behavior appears just
above Tsc. This simple looking model provides an elegant
example where a competition between two metallic phases
leads to an intermediate insulating phase.

For a simple physical picture of the various magnetic
states we derive an effective model for the DE term as
Heff ¼ �P

hijiKij cosð�ij=2Þ, with cosð�ijÞ ¼ Si � Sj, and

Kij ¼ thei�ijcyi cj þ H:c:i, here the angular bracket denotes
the quantum expectation value in the ground state [31]. The
phase �ij in tij � jtijjei�ij is trivial for the FM and 120�

states, which leads to real-valued hopping parameters.
Minimizing JS cosð�ijÞ � Kij cosð�ij=2Þ for a single

bond with Kij ¼ KFM � 0:32t we find that the FM state

becomes unstable for JS > 0:25KFM ¼ 0:08t, which is
very close to the computed transition point. In contrast,
the SC-I state has nontrivial �ij, which give rise to local

magnetic field terms in the effective Hamiltonian. The total
phase around a closed plaquette forming the 4-site unit cell
is �, and a staggered sign of this flux between neighboring
plaquettes explains the opening of energy gap in the spec-
trum of the SC state. The self-consistent emergence of this
magnetic flux clearly relies on the presence of itinerant
fermions. A similar chiral spin state has also been recently
reported in a KLM on a pyrochlore lattice [32]. We also
find nontrivial spin states for the present model on a
checkerboard lattice [33], indicating that the results dis-
cussed here in detail for the triangular lattice have broad
implications.

To conclude, a scalar-chiral insulating state emerges
when double-exchange and superexchange interactions
compete on a triangular lattice. The transition from ferro-
magnetic metal to a scalar-chiral insulator is quantum
critical in nature with both TC and Tsc vanishing at a critical
value of JS. We find that the chiral order is a consequence
of a self-consistently generated magnetic flux, which relies
crucially on the presence of itinerant fermions. There is
increasing experimental evidence that such chiral spin
states lead to anomalous Hall effect via the hopping gen-
erated magnetic fields [5,34]. The transition from a FM-
metal to a spin-glass insulating phase reported in the ex-
periments on R2Mo2O7 is qualitatively similar to that from
FM-M to the SC-I phase [8]. The observed flat-resistivity

in the vicinity of the transition is very well captured within
our calculations.
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