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I study magnetic quantum oscillations in antiferromagnetic conductors with small carrier pockets and

show that combining the oscillation data with symmetry arguments and with the knowledge of the

possible positions of the band extrema may allow us to greatly constrain or even uniquely determine the

location of a detected carrier pocket in the Brillouin zone.
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For over 50 years, magnetic quantum oscillations have
been used as a direct and precise probe of the Fermi surface
physics in metals [1]. The scope of the quantum oscillation
experiments has been ever expanding to new materials
such as layered and chain compounds, magnetically or-
dered metals, and superconductors.

Recently, quantum oscillations were successfully ob-
served in YBa2Cu3O6þx (YBCO) cuprate superconductors
[2–7], prominent members of the family of doped antifer-
romagnetic insulators. In the underdoped region of the
phase diagram, well-defined charged quasiparticles with
a small-pocket Fermi surface were the key findings, whose
further systematic study has only begun.

The small size of the carrier pockets points to an electron
ordering and a concomitant Fermi surface reconnection;
several types of order, including the ortho-II chain struc-
ture [8], stripelike spin density wave [9,10], and field-
induced antiferromagnetism [11] were evoked to account
for the observed area of the pockets. Distinguishing be-
tween these possibilities purely theoretically appears prob-
lematic: to reach agreement with quantum oscillation data,
band structure calculations often require rigid shifts in the
relative positions of the bands [8] and fitting renormaliza-
tion factors [9]. These ad hoc adjustments may become
substantial for small carrier pockets, let alone the uniden-
tified nature of the electron order likely affecting the band
structure in an unknown way. Given that probing the
YBCO Fermi surface by angle-resolved photoemission
remains a challenge, it is desirable to distinguish between
the various ordering scenarios by means of only the quan-
tum oscillations. This invites a question that is relevant far
beyond the physics of the cuprates: how do various types of
order manifest themselves in the quantum oscillations, and
how much can one possibly learn about a given type of
order from a quantum oscillation measurement alone?

An important step in this direction has been undertaken
recently by Kabanov and Alexandrov [12], who studied the
effect of the Zeeman splitting on the quantum oscillations
in a weakly doped two-dimensional insulator of square
symmetry with the Néel antiferromagnetic order. The
authors studied the reduction factor Rs, modulating
the nth harmonic amplitude due to interference of the

contributions from the two Zeeman-split branches of the
spectrum [1],

Rs ¼ cos

�
�n

�E
�0

�
; (1)

where �E is the Zeeman splitting of the Landau levels and
�0 the cyclotron energy. They showed that the Rs depends
on the orientation of the field relative not only to the
conducting plane, but also to the staggered magnetization
(Fig. 1). Moreover, in a spin-flop configuration, where the
staggered magnetization reorients itself transversely to the
field, the Landau levels undergo no Zeeman splitting
[13,14], and the Rs equals unity as long as the field H
exceeds the spin-flop threshold [12]. This behavior is in
stark contrast to that of a two-dimensional paramagnetic
conductor with the isotropic Zeeman term H Z ¼
� 1

2�BgðH � �Þ, where the Rs reads

Rs ¼ cos

�
�n

g�Bmc

@e cos�

�
; (2)

with�B ¼ 1
2

jej@
mec

being the Bohr magneton,m the cyclotron

mass, and � the inclination angle, as sketched in Fig. 1:
regardless of the value of g, the Rs in Eq. (2) has infinitely
many ‘‘spin zeros’’ as a function of �.
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FIG. 1 (color online). The staggered magnetization n, pointing
along the conducting plane, the magnetic field H and its normal
component H0 with respect to the conducting plane. The ori-
entation of the field is defined by the inclination angle � and by
the azimuthal angle ’, as shown in the figure.
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The peculiar behavior of the Rs, predicted in Ref. [12],
stems from the anisotropic spin-orbit character of the
Zeeman coupling H Z in an antiferromagnet [15–17].
The energy scale ESO of the relativistic spin-orbit coupling
tends to be negligible compared with the antiferromagnetic
gap � in the electron spectrum. Therefore, in the wide
range of magnetic fields ESO � hH Zi � � considered
hereafter, the Zeeman term is sensitive to the orientation of
the field relative to the staggered magnetization, but not to
the crystal axes. Hence, in this range of fields, the gyro-
magnetic factor g in the Zeeman term turns into a tensor
with two distinct eigenvalues, gk and g?, for the longitu-

dinal (Hk) and the transverse (H?) components of the

magnetic field H with respect to the staggered magnetiza-
tion. The gk is constant up to small relativistic corrections.

By contrast, in d dimensions, the g? must vanish on a
ðd� 1Þ-dimensional manifold fp�g in the Brillouin zone,
due to a conspiracy of the crystal symmetry with that of the
antiferromagnetic order [16,17]. Thus, the g? must depend
substantially on the quasiparticle momentum p:

H Z ¼ �1
2�B½gkðHk � �Þ þ g?ðpÞðH? � �Þ�: (3)

Whenever a small carrier pocket is centered within the
fp�g, the Zeeman splitting in a purely transverse field
vanishes [12–14], leading to a peculiar dependence of the
Rs on the field direction [12]. No spin zeros appear beyond
the spin-flop threshold, and such a behavior of the Rs may
serve as a signature of antiferromagnetic order.

A number of new developments suggest that the antifer-
romagnetism in the underdoped YBCO may be weakly
incommensurate rather than commensurate, thus calling
for an extension of the above results. Recent neutron
scattering data [18] have shown evidence of incommensu-
rate antiferromagnetism, induced by a magnetic field in the
underdoped YBa2Cu3O6:45 of very close composition to
the samples of Refs. [2–7]. At the same time, a weakly
incommensurate stripelike spin density wave with an or-
dering wave vector Q ¼ ð�a ½1� 1

2N�; �aÞ, with an integer N

(a being the lattice spacing), was found to yield [9,10], in a
broad parameter range, small electron pockets, consistent
not only with the quantum oscillation data [2–7], but also
with the observed negative low-temperature Hall coeffi-
cient [19].

How could such a weakly incommensurate antiferro-
magnetism manifest itself in quantum oscillations? The
answer depends on the location of the carrier pocket in
the Brillouin zone. Pockets, centered within the fp�g, were
described above. Weak incommensurability opens a new
possibility: pockets, centered outside the fp�g.

For Q ¼ ð34 �
a ;

�
aÞ and generic values of the density wave

parameters, Ref. [9] found such pockets, centered at the
points B in Fig. 2(a), while Ref. [10] found analogous
pockets for Q ¼ ð78 �

a ;
�
aÞ. These pockets are about �

2a

away from the nearest point S, where the line g?ðpÞ ¼ 0
is pinned by symmetry. In the simplest case, the line

g?ðpÞ ¼ 0 is singly connected and pinned at the points
S; g?ðpÞ is suppressed only within momentum deviations
j�pj & ��1 � �

2a from this line [17]. In such a case, the g

tensor at the B pockets is isotropic up to vanishingly small
corrections of the order of ða=�Þ2 � 1, which can be read
off from Eq. (11) of Ref. [17] for the Q ¼ ð�a ; �aÞ Néel

order.
However, a very recent study [20] found the g?ðpÞ ¼ 0

line numerically for a Q ¼ ð34 �
a ;

�
aÞ spin density wave, and

discovered that this line may be multiply connected, with
components disconnected from symmetry-enforced degen-
eracy points. Some of these components were found to pass
close to the B points. In such cases, the g?ðpÞ for the B
pockets is nonzero yet reduced, and thus the g tensor is
strongly anisotropic [20]. By contrast with the pockets,
centered on the line g?ðpÞ ¼ 0, the Zeeman splitting of
the B-pocket Landau levels does not vanish, and the spin
zeros do appear even in the spin-flop configuration, albeit
at greater inclination angles �.
Do the above observations open any diagnostic opportu-

nities? Of course, spin zeros are no proof of antiferromagne-
tism. However, having experimental knowledge of the
presence and periodicity of the antiferromagnetism in the
sample greatly restricts the allowedpossibilities: for instance,
in Q ¼ ð34 �

a ;
�
aÞ and Q ¼ ð78 �

a ;
�
aÞ spin density wave states,

the B points in Fig. 2(a) were the only band extrema outside
the fp�g, found by Refs. [9,10] for generic parameter values.
Thus, observation of spin zeros in such an antiferromagnet
constrains the detected carrier pocket uniquely to the center
point B of the magnetic Brillouin zone.
By contrast, in a Q ¼ ð�a ; �aÞ antiferromagnet, in the

relevant parameter range the calculated band minima

(a) (b)

FIG. 2 (color online). (a) The first quadrant of the paramag-
netic Brillouin zone of a Q ¼ ð34 �

a ;
�
aÞ antiferromagnet [9]. The

dashed (blue) lines denote the antiferromagnetic Brillouin zone
boundaries. The thick (red) curve shows a typical line, where
g?ðpÞ ¼ 0; this line is pinned by symmetry at the points S at the
momenta p� ¼ ð�8a ½2nþ 1�; �2a ½2lþ 1�Þ. The band extrema were

found [9] at the points B, shown by the open circles, and, in a
narrower parameter range, at the points S, shown by dark circles.
(b) The same as (a), but for a Q ¼ ð�a ; �aÞ Néel antiferromagnet

on a lattice of square symmetry. The thick (red) line shows the
antiferromagnetic Brillouin zone boundary, where g?ðpÞ ¼ 0.
The band extrema were found at the points � (black circles) and
X (open circles).

PRL 105, 216404 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 NOVEMBER 2010

216404-2



were found only on the magnetic Brillouin zone boundary
[11], where g?ðpÞ ¼ 0. For such carrier pockets, no spin
zeros appear in a purely transverse field; thus, observation
of spin zeros is essentially incompatible with Q ¼ ð�a ; �aÞ
Néel antiferromagnetism.

The experiments have not yet reached a consensus.
Measurements of the underdoped YBa2Cu3O6:54 have
found no spin zeros within the expected angular range
[21]. By contrast, Ref. [22] studied the underdoped
YBa2Cu3O6:59 and did find spin zeros, consistent with the
isotropic g tensor, within the range of Ref. [21].

While settling this disagreement is beyond the scope of
the present work, eventually finding no spin zeros at all
would be consistent with antiferromagnetism and the pock-
ets centered within the fp�g. By contrast, between the Q ¼
ð�a ; �aÞ and Q ¼ ð�a ½1� 1

2N�; �aÞ spin density waves, detect-

ing spin zeros would be consistent only with the latter
periodicity and with the detected pockets centered
uniquely at the B points in Fig. 2(a).

I will now demonstrate the symmetry underpinnings of
the above results [17]. In aQ ¼ ð�a ½1� 1

2N�; �aÞ spin density
wave state with an integer N and possible charge modu-
lations at multiples of the Q, the conduction electron spin
� is subject to the exchange coupling �ðrÞ � �, changing
sign upon translation Tb by a single lattice spacing along
the y axis, or by 2N spacings along the x axis:�ðrþ bÞ ¼
��ðrÞ. Hence, in a transverse magnetic field, �TbUnð�Þ is
an antiunitary symmetry of the Hamiltonian, where � is
time reversal, and Unð�Þ is a spin rotation by � around the
unit vector n of the staggered magnetization. Retracing the
derivation of Eq. (5) in Ref. [17], one finds

hpj�TbUnð�Þjpi ¼ e�2ip�bhpj�TbUnð�Þjpi: (4)

Thus, a Bloch eigenstate jpi at a momentum p is orthogo-
nal to its partner �TbUnð�Þjpi at the momentum �p [23].
In the folded Brillouin zone, defined by the periodicity of
the�ðrÞ, the momenta p� ¼ ð �

2Na ½2kþ 1�; �2aÞ and�p� are
equivalent for an integer k. Hence, Eq. (4) proves the
Kramers degeneracy of the Bloch eigenstates at p ¼ p�
in a transverse magnetic field. In two dimensions, the
equation g?ðpÞ ¼ 0 defines a line in the Brillouin zone,
and Eq. (4) pins this line at the above symmetry-enforced
degeneracy points S, as shown in Fig. 2(a) forQ ¼ ð3�4a ; �aÞ.

The S points do tend to host a band extremum [9,10].
The leading term of the momentum expansion of the g?ðpÞ
around these points is linear, and the Landau levels and
their Zeeman splitting have been described in Refs. [12–
14]. A carrier pocket may also be centered at a point, where
the line g?ðpÞ ¼ 0 intersects itself, as it does at the point X
in Fig. 2(b). The leading term of the momentum expansion
of the g?ðpÞ around the point X is quadratic [14,17], and
the carrier Hamiltonian near the point X takes the form

H ¼ p2

2m
� ð�k � �Þ � p2

x � p2
y

2m�
ð�? � �Þ; (5)

where � � 1
2gk�BH. The small pocket size implies that

p2
F

m� � �
� � 1, where � is the chemical potential, counted

from the bottom of the pocket.
According to the Hamiltonian (5), in a transverse field

(�k ¼ 0) the Landau levels undergo no Zeeman splitting,

while the effective mass tensor becomes anisotropic and

dependent on the spin projection onto �? as per m�1
x=y ¼

m�1½1� ð�?��Þ
� �, as shown in Fig. 3. Beyond the spin-flop

threshold, the staggered magnetization reorients itself
transversely to the field; thus, the Landau levels undergo
no Zeeman splitting, and no spin zeros are to be found in
any field direction.
Near the spin flop but with �k � 0 in the Hamiltonian

(5), the Zeeman splitting �E of the Landau levels is simply
�E ¼ 2�k [14], with small corrections of the order of

½�=��2 � 1: at a low enough doping, �E behaves as if
the last term in Eq. (5) simply vanished.
Hence, according to Eq. (1), for a small pocket at the

point X, the field direction of the lth spin zero in the main
harmonic (k ¼ 1) satisfies the equation

�E
�0

¼ �
Hk
H0

¼ � tan� cos’ ¼ lþ 1

2
; (6)

where � ¼ gk�B
mc
@e ¼ gk

2
m
m0

, l is an integer, H0 ¼ H cos�

is defined in Fig. 1, and Hk ¼ H sin� cos’ is the longitu-

dinal component of the field with respect to the staggered
magnetization.
The distinction between the above spin zeros and those

of the S and � pockets stems from the leading term of the
momentum expansion of the g?ðpÞ around the points S and
� being linear rather than quadratic:

H ¼ p2
x

2mx

þ p2
y

2my

� ð�k � �Þ � �py

@
ð�? � �Þ; (7)

FIG. 3 (color online). A sketch of the Zeeman splitting of the
small carrier pockets, centered at the points X ¼ ð0; �aÞ [Eq. (5)]
and � ¼ ð�2a ; �2aÞ [Eq. (7)] in the first quadrant of the Brillouin

zone, in a purely transverse magnetic field. The dashed line,
passing through the points X and �, is the magnetic Brillouin
zone boundary, where g?ðpÞ ¼ 0. The pocket sizes and the
splitting are greatly exaggerated.
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where py is the transverse component of the momentum

with respect to the magnetic Brillouin zone boundary in
Fig. 3. Here, as at the point X, the carrier pocket is assumed

small enough to be described by Eq. (7):
�py

@
&

ffiffiffiffi
�
��

q
� 1,

where �� ¼ @
2

2my�
2 � �2

�F
, and � is the chemical potential,

counted from the bottom of the pocket. The length scale �
is of the order of the antiferromagnetic coherence length
@vF=� [17]. The spin zeros for such a pocket, encapsulated
in Eq. (11) of Ref. [12], differ from those given by Eq. (6)

only via the small parameter
ffiffiffiffi
�
��

q
� 1. This quantitative

and, for most field orientations, numerically small differ-
ence is likely to render experimentally distinguishing the�
pockets from their X counterparts rather difficult, espe-
cially on the background of the Fermi surface corrugation
[24] and bilayer splitting [7]. These effects also modify the
oscillation amplitude in a material-specific way [7,24].

To conclude, I have shown that, in an antiferromagnet, a
combination of symmetry arguments with the knowledge
of the possible positions of the band extrema [25] allows
us to either constrain the possible locations of a small
carrier pocket, or even to pinpoint it in the Brillouin zone
by mapping the spin zeros of the quantum oscillation
amplitude. This opportunity arises due to the anisotropic
spin-orbit character of the Zeeman coupling in an antifer-
romagnet, and does not exist in a paramagnetic conductor.
While I use the Q ¼ ð�a ½1� 1

2N�; �aÞ and Q ¼ ð�a ; �aÞ spin
density waves as an illustration, possibly relevant to cup-
rate superconductors, the method is applicable to many
other antiferromagnets, such as iron pnictides, and organic
and heavy fermion materials.
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