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We study lattice models of charged particles in uniform magnetic fields. We show how longer range

hopping can be engineered to produce a massively degenerate manifold of single-particle ground states

with wave functions identical to those making up the lowest Landau level of continuum electrons in a

magnetic field. We find that in the presence of local interactions, and at the appropriate filling factors,

Laughlin’s fractional quantum Hall wave function is an exact many-body ground state of our lattice

model. The hopping matrix elements in our model fall off as a Gaussian, and when the flux per plaquette is

small compared to the fundamental flux quantum one only needs to include nearest and next-nearest

neighbor hoppings. We suggest how to realize this model using atoms in optical lattices, and describe

observable consequences of the resulting fractional quantum Hall physics.
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The interplay between periodic potentials and magnetic
fields is an important topic [1–5]. In the tight binding limit,
the lattice broadens the Landau levels into a series of finite
bandwidth ‘‘Hofstadter bands’’ which can be represented
as a self-similar fractal. Since the original band gaps
persist, the integer quantum Hall effects are robust against
the lattice. The split degeneracy, however, invalidates
many of the analytic arguments used to explain the frac-
tional quantum Hall effect [6–9], and questions remain
about the nature of the interacting system. Here, by adding
longer range hoppings to a Hubbard model, we produce a
Hamiltonian for which several Hofstadter bands coalesce
into a single degenerate manifold. Adding local repulsion
between the particles, we show that at appropriate filling
factors the Laughlin wave function becomes an exact
ground state.

In a uniform magnetic field, the most general hopping
Hamiltonian on a two-dimensional square lattice is

H ¼ X
j�k

Jðzj; zkÞayj ak;

Jðzj; zkÞ ¼ WðzÞeð�=2Þðzjz��z�j zÞ�;

(1)

where the position of the jth lattice site is written in
complex notation as zj ¼ xj þ iyj, and z ¼ zk � zj. The

operators aj annihilate an atom at site j. The phase factor

ðzjz� � z�j zÞ� ¼ 2iðxjy� yjxÞ�, corresponds to a uni-

form magnetic field in the symmetric gauge, with flux �
through each plaquette. This flux is only defined modulo 1,
and having a full flux quantum through each plaquette is
gauge equivalent to no flux. We will explicitly assume 0 �
� � 1, and take � ¼ p=q to be the ratio of two relatively
prime integers. If one chooses W to be �t for nearest
neighbors and zero otherwise, one reproduces the
Hofstadter spectrum [1]. We show that if instead we choose

WðzÞ ¼ tGðzÞe�ð�=2Þ½ð1��Þjzj2� GðzÞ � ð�1Þxþyþxy; (2)

the lowest p Hofstadter bands collapses to a single fully
degenerate Landau level. Although we work in the sym-
metric gauge A ¼ ðB=2Þðxŷ � yx̂Þ, converting our results
to other gauges is trivial: under a gauge transformation

AðrÞ ! AðrÞ þ r�ðrÞ and cj ! cje
i�ðrjÞ. The flux is mea-

sured in units of �0 ¼ h=e, where h is Planck’s constant,
and e is the electric charge. Our derivation of this
Hamiltonian is similar to one used by Laughlin [10] and
subsequently corrected or extended in Refs. [11,12]. The
paradigm of creating a parent Hamiltonian for which a
desired quantum state is an exact eigenstate has been
fruitful in a number of other spin models [13–15]. We
work in units where t ¼ 1. A similar construction can be
defined for triangular lattices [16].
Our results have deep implications. First and foremost,

they provide an exact equivalence between the lowest
Landau level in the continuum and in a realistic lattice
system. This equivalence is unexpected, and can be further
exploited. For example, it provides an avenue for robust
lattice calculations of continuum quantum Hall systems,
and investigations of lattice fractional quantum Hall states
[4,17]. Similarly it provides a means for lattice experi-
ments to emulate an important continuum problem [18].
Massive degeneracies, such as the ones we found here,

are related to symmetries. Further theoretical work on this
model may reveal these symmetries. Our model also pro-
vides a convenient inroad towards a semiclassical under-
standing of the Hofstadter spectrum, and connections to
magnetic breakdown in real materials [19].
The most promising experimental realization of our

model is in optical lattices [18]. Optical lattice experiments
can study both bosonic and fermionic quantum Hall states,
and allow us in principle to study much larger fluxes than
can be achieved with real magnetic fields. The gauge
potential in the optical lattice system can be created in a
number of ways: time-varying hopping elements [2], latti-
ces with multiple sets of minima [20], coherent Raman
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scattering [21] and rotation [5,22–26]. Further, optical
lattice systems allow us to directly tune the hopping am-
plitudes between nearby sites. Long-range hopping is dif-
ficult to arrange, but in our model J falls off as a Gaussian,
and in the limit of small � it suffices to include only
nearest and next-nearest neighbor hopping. The ratio of
these hopping matrix elements can be controlled in an
experiment by adjusting the shapes of the barriers between
those sites. One practical scheme would involve adding an
additional array of shallow wells displaced by half a lattice
spacing in both the x and y directions. Integrating out these
shallow sites will renormalize the nearest and next-nearest
neighbor hoppings. A second scheme would be to divide
the original lattice into two sublattices. Separating the
sublattices in the z direction will attenuate the nearest
neighbor tunnelling while leaving the next-nearest neigh-
bor matrix element largely unchanged. Figure 1 compares
the energies of the single-particle eigenstates of Eq. (1),
using theW in Eq. (2), as well as truncating to only nearest
neighbors or next-nearest neighbors. As one can see, even
for � ¼ 1=3, the next-nearest neighbor hopping already
reduces the bandwidth to 0:1t.

Another possible realization of Eq. (2) would be 2D
electron gases in a superlattice [27–30]. Hopping ampli-
tudes can be tuned through altering the device structure.
These systems also naturally include long-range Coulomb
interactions, which are absent in trapped neutral atoms, and
lead to richer many-body physics.

Not only does this Hamiltonian produce a macroscopi-
cally degenerate manifold of single-particle ground states,
but this manifold is spanned by wave functions of the
form

c nðzjÞ ¼ hjjc ni ¼ znj exp

�
���

2
jzjj2

�
; (3)

all with energy � ¼ �1. Remarkably, this is the same
structure as the continuum problem, where the lowest
Landau level (LLL) is characterized by the same degenerate
set of single-particle states. To prove this result, we write

hjjHjc ni
hjjc ni

¼ X
z�0

GðzÞ ðzj þ zÞn
znj

e�ð�=2Þjzj2���z�j z: (4)

We then appeal to the singlet sum rule [10,31],

kðcÞ � X
z

eczGðzÞe�ð�=2Þjzj2 ¼ 0 8 c; (5)

where the sum is over all z ¼ nþ imwith integer n andm.
By taking any number of derivatives with respect to c one
finds X

z

fðzÞGðzÞe�ð�=2Þjzj2 ¼ 0; (6)

for any entire function fðzÞ that diverges sufficiently slowly
as jzj ! 1 [32]. Since we do not include the z ¼ 0 term in
Eq. (4), one immediately finds that the right-hand side is
simply �1, proving that the LLL wave functions (3) are
degenerate eigenstates. No analogous argument works for
the higher Landau level wave functions, which involve
powers of both z� and z.
Given that the wave functions in (3) are identical to

those of the continuum problem, the total number of de-
generate states per unit area is the same as in the contin-
uum; this results in �Ns LLL wave functions in a region
containing Ns lattice sites. Thus � is the fraction of all
single-particle states which reside in the LLL. Taking � ¼
p=q, the standard Hofstadter problem yields q distinct
bands. Thus, as we confirm numerically, our LLL must
be made from the lowest p of these. This p-fold collapse is
consistent with the relationship between the Chern num-
bers of the Hofstadter bands, and that of the LLL [33].
For �> 1=2 it is natural to also consider the

Hamiltonian formed if one replaces � in Eq. (2) with 1�
� and leaves Eq. (1) unchanged. Because of the periodicity
in � of lattice models, this gives a Hamiltonian with the
same absolute flux per plaquette; however it is clearly a
distinct Hamiltonian, with shorter range hopping. This
alternative Hamiltonian yields states analogous to (3), but
with z replaced by z� and a degeneracy of ð1��ÞNs.
The massive ground-state degeneracy of our system can

be lifted by interactions. Since our model reproduces the
continuum lowest Landau level, we can simply use those
results [7,9,34]. On-site repulsion in the lattice is equiva-
lent to point interactions in the continuum. Consider, for
example, the interacting Hamiltonian

H¼ X
j�k;�

Jðzj;zkÞayj�ak�þ
X

j;�;�0

U��0

2
ayj�a

y
j�0aj�0aj� (7)

where U��0 > 0 is the on-site interaction energy of parti-
cles with spin states � and �0. Any LLL wave function
which vanishes when two particles coincide is a ground
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FIG. 1. All single-particle eigenvalues for the hopping
Hamiltonian in Eq. (1) with � ¼ 1=3 on a 12� 12 lattice
with periodic boundary conditions. The index n labels eigenval-
ues from smallest to largest. The white disks use hopping matrix
elements given by Eq. (2), the black disks are the same model
with only nearest and next-nearest neighbor hopping, and the
grey boxes have only nearest neighbor hopping (the Hofstadter
Hamiltonian). Energies are all measured in units of t. The
energies of the white and black disks are nearly indistinguish-
able, and the white disks obscure some of the black ones. The
lowest 1=3 of the white disks are all degenerate.
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state of this Hamiltonian. Because of the structure of the
LLL, there is a maximal atomic density for which this
occurs. For single component bosons the highest density
ground state is the � ¼ 1=2 Laughlin state,

c ðz1; . . . ; zNÞ ¼
YN

i<j¼1

ðzi � zjÞ2
YN
j¼1

e���=2jzjj2 : (8)

For 2-component fermions it is the ferromagnetic ‘‘111’’
state [34]. At fixed density, these states are unique up to
topological degeneracies. The other Laughlin states and
more exotic quantum Hall states are also ground states if
� � 1=2; however, they are not unique if all interactions
are local.

Longer ranged interactions (as found in electronic sys-
tems or in optical lattice experiments with dipolar gases
[26]) will typically lift the degeneracy entirely [35]. The
subsequent analysis can be quite involved, but most con-
tinuum arguments will carry over.

Our construction is readily extended to a finite system
with magneto-periodic boundary conditions,

c ðzþ nLþ imLÞ ¼ c ðzÞei��Lðny�mxÞ: (9)

There one replaces the polynomials in Eq. (3) with appro-
priate products of Gaussians and Jacobi theta functions
[36,37]. One also replaces Jðzj; zÞ in Eq. (1) by its

magneto-periodic extension

JLðzj; zÞ ¼
X
R

Jðzj; zþ RÞ exp
�
�

2
ðzjR� � z�jRÞ�

�
; (10)

where the sum is over all R ¼ nLþ imL for integer n, m.
This finite system is amenable to numerical calculations.
To invoke the singlet sum rule in a periodic geometry, one
must simply merge the sums on z and R into a single sum
over all z � 0. The phase factors from the magnetoperio-
dicity of c ðzÞ and J cancel each other.

In the finite system with magneto-periodic boundary
conditions the � ¼ 1=p Laughlin state is

�ðfzngÞ ¼ �cm

YM
k<j

�p
jk

YM
j¼1

e�ðpM=2L2Þðz2j�jzjj2Þ

�cm ¼ Yp
i¼1

�1

�
�

L
ðZ� ZiÞ

�
:

(11)

The center of mass coordinate is Z ¼ P
jzj, and �jk ¼

�1½�ðzj � zkÞ=L�, with �1ðzÞ¼P
nð�1Þn�1=2e��ðnþ1=2Þ2

eizð2nþ1Þ. There are p parameters Zi which represent the
location of the center of mass zeros. In the continuum
system there is a symmetry which causes the energy to
be independent of how these are chosen. The space of
degenerate states is spanned by p orthogonal wave
functions. In most lattice models this symmetry is broken,
and the degeneracy is lifted. Since Eq. (11) is made up
of lowest Landau wave functions, in our model the

degeneracy persists. In Fig. 2 we confirm this degeneracy
via an exact diagonalization calculation for 4 bosons on a
4� 4 lattice with p ¼ 2 and hard-core repulsion.
Our results give some insight into recent calculations of

Sorensen et al. [2,26]. They investigated the standard
Bose-Hubbard model with nearest neighbor hopping
and a uniform magnetic field. Fixing the filling factor at
� ¼ 1=2, they found that when � became of order 0.2 the
overlap between the exact ground state and the p ¼ 2
Laughlin state (11) begins to rapidly decrease. The char-
acteristic range of hoppings in our model increases with
�—and near � ¼ 0:2 the next-nearest neighbor matrix
element starts to become significant.
Since we advocate using cold atoms to investigate this

physics, it is important to understand how fractional quan-
tum Hall physics would manifest itself in those systems.
Although most difficult, the most exciting observations
would be ones which probe the braiding properties of the
excitations [38,39]. These states also have definite signa-
tures in Bragg spectroscopy [3]. The most robust probe,
however, is an analog of the vanishing longitudinal resist-
ance seen in solid state systems—namely the incompres-
sibility of the fractional quantum Hall states [5,40]. This
incompressibility is readily observed in trapped systems,
where the chemical potential (and hence the filling factor)
varies slowly in space. As is caricatured in Fig. 3, the
equation of state nð�Þ has a series of plateaus correspond-
ing to the filling factor taking on integer fractions. Within
the local density (Thomas-Fermi) approximation, the den-
sity profile of the trapped cloud will display these same
plateaus [40–43]. The width of these plateaus is set by the
gap to single-particle excitations in the fractional quantum
Hall states. As shown in Fig. 2, in the hard-core limit the
gap in a 4� 4 lattice at � ¼ 1=2 and� ¼ 1=2 is 0.566 tnn.
This should be compared to the bandwidth V � 4tnn. As�
goes from 0 to V the density goes from zero to one. One
therefore expects that the � ¼ 1=2 plateau will occupy
roughly 1=8 of the cloud.
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FIG. 2 (color online). First 100 eigenvalues for 4 particles on a
4� 4 lattice with periodic boundary conditions, � ¼ 1=2, and
hard-core repulsion. The two states at � ¼ �4 are Laughlin
states (11); the degeneracy stems from the toroidal geometry.
There is a distinct energy gap of 0:566tnn to the lowest excited
states, where tnn is the nearest neighbor hopping amplitude.
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