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We consider fermionic polar molecules in a bilayer geometry where they are oriented perpendicularly

to the layers, which permits both low inelastic losses and superfluid pairing. The dipole-dipole interaction

between molecules of different layers leads to the emergence of interlayer superfluids. The superfluid

regimes range from BCS-like fermionic superfluidity with a high Tc to Bose-Einstein (quasi-)

condensation of interlayer dimers, thus exhibiting a peculiar BCS–Bose-Einstein condensation crossover.

We show that one can cover the entire crossover regime under current experimental conditions.
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Ultracold gases of dipolar particles attract great interest
because the dipole-dipole interaction drastically changes
the nature of quantum degenerate regimes compared to
ordinary short-range interacting gases [1,2]. This has
been demonstrated in experiments with a Bose-Einstein
condensation (BEC) of chromium atoms which have a
magnetic moment of 6�B equivalent to an electric dipole
moment of 0.05 D [3–5]. The recent experiments on creat-
ing polar molecules in the ground ro-vibrational state [6,7]
and cooling them towards quantum degeneracy [6] have
made a breakthrough in the field. For such molecules
polarized by an electric field the dipole-dipole interaction
is several orders of magnitude larger than for atomic
magnetic dipoles. This opens fascinating prospects for
the observation of new quantum phases [1,2,8–12]. The
main obstacle is the decay of the system due to ultracold
chemical reactions, such as KRbþ KRb ) K2 þ Rb2
found in recent experiments [13]. These reactions are
expected to be suppressed by the intermolecular repulsion
in 2D geometries where the molecules are oriented per-
pendicularly to the plane of their translational motion [14].

In this Letter we consider fermionic polar molecules in a
bilayer geometry where the dipoles are oriented perpen-
dicularly to the layers [Fig. 1], which leads to low inelastic
losses and allows for the possibility of superfluid pairing.
The interaction between dipoles of different layers may
lead to the emergence of an interlayer superfluid, that is a
superfluid 2D gas where Cooper pairs are formed by
fermionic molecules of different layers. We show that the
interlayer dipole-dipole interaction provides a higher su-
perfluid transition temperature than that for 2D spin-1=2
fermions with attractive short-range interaction.

Interestingly, an increase in the interlayer dipole-dipole
coupling leads to a novel BCS-BEC crossover resembling
that studied for atomic fermions near a Feshbach resonance
[15,16]. The reason is that two dipoles belonging to differ-
ent layers can always form a bound state [17]. As long as

the binding energy �b is much smaller than the Fermi
energy EF, or equivalently the size of the interlayer two-
body bound state greatly exceeds the intermolecular spac-
ing in the fx; yg plane, the ground state of the system is the
BCS-paired interlayer superfluid. Once a reduction of the
interlayer spacing � or an increase of the molecular dipole
moment d by an electric field make �b � EF, dipolar
fermions of different layers form true bound states in real
space and the ground state is a Bose-condensed system of
these composite bosons. We describe this peculiar BCS-
BEC crossover and show that interlayer superfluids may be
observed for typical parameters of ongoing experiments.
Strictly speaking, at a finite temperature T in the thermo-
dynamic limit this is a crossover from a BCS-paired
algebraic superfluid to an algebraic bosonic superfluid
(quasi-BEC) of dimers. However, we keep the term BCS-
BEC crossover for brevity .
We consider the bilayer system of Fig. 1, assuming no

interlayer hopping. The interaction potential between two
dipoles belonging to different layers has the form

VðrÞ ¼ d2
r2 � 2�2

ðr2 þ �2Þ5=2 ; (1)

where r is the in-plane separation between these dipoles.

The potential VðrÞ is attractive for r < ffiffiffi
2

p
�, and repulsive

at larger distances r. It satisfies the relation

FIG. 1 (color online). Bilayer dipolar system under
consideration.
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Z
VðrÞd2r ¼ 0; (2)

which precludes the ordinary method of finding a bound
state in 2D potentials finite at the origin [18]. However, it
has been proven that VðrÞ always has a bound state [17], at
any dimensionless strength � ¼ r�=�, with r� ¼ md2=@2

being the dipole-dipole length. For � � 1 the binding
energy is exponentially small [19],

�b ’ E0 exp½�8ð1� �Þ=�2 � ð5þ 2�� 2 ln2Þ�; (3)

where E0 ¼ @
2=m�2, and � ¼ 0:5772 is the Euler con-

stant. One finds numerically that Eq. (3) is valid up to
� ’ 1. Note that the unusual dependence on the interac-
tion, �b � expð�8=�2Þ, is a consequence of Eq. (2).

Dipoles of different layers undergo the 2D s-wave scat-
tering from each other in the interlayer potential VðrÞ. We
define the off-shell scattering amplitude as

fðk;k0Þ ¼ ðm=@2Þ
Z

expð�ik0rÞVðrÞc kðrÞd2r; (4)

where c kðrÞ is the true wave function of the relative
motion with momentum k. The potential VðrÞ shows a
slow power law decay �1=r3 at large distances r.
Therefore, at low relative momenta k � r�1� , ��1 and
k0 � r�1� , ��1 one has two contributions to the scattering
amplitude: the contribution from short distances and the
so-called anomalous contribution from distances r� 1=k
[18] obtained using a perturbative approach in VðrÞ. The
leading short-range and anomalous contributions yield the
following s-wave part of fðk;k0Þ:

fðk; k0Þ ¼ 2�

lnð�=kÞ þ i�=2
� 2�kr�F1

�
k0

k

�
; (5)

omitting higher order terms. The short-range (logarithmic)
contribution is obtained by putting k0 ¼ 0 and proceeding
along the lines of the 2D scattering theory [18]. The k
dependence of the s-wave part of c k at distances in the
interval r�, � � r � k�1 is given by a factor ½lnð�=kÞ þ
i�=2��1, where � depends on the behavior of VðrÞ at small
r and in the presence of the weakly bound state we have
� ¼ ffiffiffiffiffiffiffiffiffi

m�b
p

=@ [18]. The anomalous term comes from dis-

tances where the motion is almost free. We then have
F1ðxÞ ¼ ðx2=2ÞFð1=2; 1=2; 2; x2Þ þ Fð1=2;�1=2; 1; x2Þ,
where F is the hypegeometrical function, so F1ð1Þ ¼ 4=�.
This is valid for k0 < k; for k0 > k one should interchange
k0 and k. A detailed derivation of fðk; k0Þ, including k2

terms, will be given elsewhere.
The anomalous term in Eq. (5) corresponds to attraction

and so does the logarithmic term if � � k, i.e., if the
collision energy is much larger than �b. Thus, both the
short-range and anomalous contribution may lead to su-
perfluid interlayer pairing. Note that for short-range poten-
tials, like all interatomic potentials decaying as 1=r6, only
the logarithmic term is present in Eq. (5). We will show
that the anomalous scattering drastically influences the

superfluid pairing. The inlayer dipole-dipole interaction
is repulsive and it simply renormalizes the chemical po-
tential. This is valid as long as the inlayer repulsion is
sufficiently weak to exclude crystallization [10,11].
Treating molecules of the first and second layers as spin-

up and spin-down fermions, our problem is mapped onto
spin-1=2 fermions with a peculiar interaction potential.
For a weak interlayer attractive interaction we use the
BCS approach and obtain the standard gap equation for
the momentum-space order parameter,

�ðkÞ ¼ �
Z dk02

ð2�Þ2
Vðk� k0Þ�ðk0Þ

2�k0
tanh

�
�k0

2T

�
; (6)

where �k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEk ��Þ2 þ j�ðkÞj2p

is the gapped disper-
sion relation, � is the chemical potential, and Ek ¼
@
2k2=2m. We rewrite Eq. (6) expressing the Fourier com-
ponent of the interaction potential, Vðk� k0Þ, through the
off-shell scattering amplitude [20]. Assuming that the
s-wave interaction is the leading channel of superfluid
pairing the renormalized gap equation reads

�ðkÞ ¼ � @
2

2m

Z d2k0

ð2�Þ2 fðk; k
0Þ�ðk0Þ

�
�
tanhð�k0=2TÞ

�k0
� 1

Ek0 � Ek � i0

�
: (7)

As long as the interaction is really weak and � ’ EF

[21], Eq. (7) may be employed for calculating �ðkÞ and the
superfluid transition temperature. As known, in 2D the
transition from the normal to superfluid state is of
the Kosterlitz-Thouless type. However, in the BCS limit
the Kosterlitz-Thouless transition temperature is very close
to the critical temperature Tc given by the BCS gap equa-
tion [22]. Using Eq. (7) we obtain the relation between Tc

and the order parameter on the Fermi surface at T ¼ 0,
�0ðkFÞ, which is the same as in 3D [23]

Tc ¼ ðe�=�Þ�0ðkFÞ: (8)

When the short-range logarithmic contribution to Eq. (5)
dominates, the anomalous term can be omitted. This is, in
particular, the case for� approaching unity and sufficiently
small values of kF�. Then, using Eq. (7) we recover the
well-known results [22,24]:

�0ðkFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EF�b

p
; Tc ¼ ðe�=�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EF�b
p

: (9)

Note that we do not include here the second order
Gor’kov–Melik-Barkhudarov corrections. They decrease
both �0ðkFÞ and Tc by a factor of e [25], but Eq. (8)
remains valid. A detailed analysis of the BCS limit up to
the second order will be given elsewhere.
For �< 1 the anomalous scattering dominates, at least

for not very low kF. Then the logarithmic term in Eq. (5)
reduces to ���2=2, and it is necessary to include qua-
dratic terms in k. In this case the scattering amplitude can
be calculated using the second order Born approximation.
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The expression for the off-shell amplitude is cumbersome.
The on-shell amplitude is fðk; kÞ ¼ f0=ð1þ if0=4Þ, where
f0ðkÞ is real and given by

f0 ¼ �8kr� þ 4�ðkr�Þ2
�

� ��2

2
þ 3�ðkr�Þ2

� ln

�
k�

2
e�þð23=12Þ

�
; (10)

where the first term is dominant and it follows from the
second term in Eq. (5) at k0 ¼ k.

We now use Eq. (7) to calculate Tc. For T ! Tc, we set
�ðk0Þ ¼ 0 in the dispersion relation which becomes �k0 ¼
jEk0 � EFj. The main contribution to the integral over dk0
comes from the region near the Fermi surface, where we
put k0 ¼ kF in the arguments of� and f, and taking k ¼ kF
use fðkF; kFÞ from Eq. (10). For the rest of the integration
it is sufficient to use fðkF; k0Þ given by the second term
of Eq. (5) and employ the relation �ðkÞ ’
�ðkFÞfðk; kFÞ=fðkF; kFÞ following from Eq. (7). After a
straightforward algebra we then find

Tc ¼ 0:1EF

�
E0

EF

�
0:46

exp

�
� �

4kFr�
GðkF�;�Þ

�
; (11)

where Gðx; yÞ ¼ ð1� �x=2þ �y=16xÞ�1. The validity of
Eq. (11) requires 1 � kF� � ��=16. One easily checks
that Eq. (11) gives a significantly higher Tc than that given
by Eq. (9). The numerical solution of Eq. (7) also confirms
this conclusion for kF� approaching unity. Figure 2 shows
that Tc strongly departs from Eq. (9) for small �, an
anomalous behavior stemming from the long-range char-
acter of the interlayer interaction.

For sufficiently strong interactions � deviates from EF,
and Eq. (7) should be complemented by the number equa-
tion [26,27] for the 2D density n in one layer

n ¼ 1

2

Z d2k

ð2�Þ2
�
1� Ek ��

�k
tanh

�
�k
2T

��
: (12)

We found numerically � and �ðkÞ from the self-consistent
solution of Eqs. (7) and (12). Alternatively, we used Eq. (6)
together with (12), which is adequate since the potential
VðrÞ is finite and strongly bounded at small r.
This approach provides a qualitative description of the

strongly interacting regime [26,27]. An increase of �b by,
e.g., increasing� leads to bound interlayer dimers when �b
becomes much larger than EF and the chemical potential
for the fermionic molecules is � ’ ��b=2, in contrast to
� ’ EF in the BCS regime. These composite bosons
condense and we thus have a BCS-BEC crossover. An
approximate crossover line is marked by the condition
� ¼ 0 [27] [Fig. 3]. At sufficiently low T, well above
this line a dimer (quasi)-BEC occurs, whereas well below
the line the system is a Fermi gas which is superfluid or
normal, depending on T and density [Fig. 3].
For strong interactions, Tc calculated from Eqs. (7) and

(12) cannot be interpreted as the critical temperature for
the onset of superfluidity. Instead, it corresponds to the
temperature of pair dissociation [28]. The temperature of
the Kosterlitz-Thouless transition, TKT, below which the
system is superfluid, satisfies the equation [29]

TKT ¼ �@2�sðTKTÞ=2M2; (13)

where M ¼ 2m is the dimer (Cooper-pair) mass, and �s is
the superfluid mass density just below TKT, which may be
determined from our mean-field equations using the known
expression for the normal density [23]. In Fig. 4 we depict
TKT and Tc versus � for kF� ¼ 0:5. In the BCS regime we
retrieve TKT � Tc and see that the ratio Tc=EF can reach
0.04. For strong interactions where �ðkFÞ is a sizable
fraction of EF we obtain TKT ¼ 0:125EF (cf. [30]). In
the intermediate regime TKT interpolates smoothly be-
tween these limits [see Fig. 4]. On the BEC side of the
crossover we take into account a noticeable normal frac-
tion, which makes TKT lower. We obtain that TKT ’ 0:1EF

for � ’ 2:2 and very slowly decreases with increasing �
(decreasing the interaction), in agreement with the result
for bosons [31].
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FIG. 2 (color online). Critical temperature Tc as a function of
the dipole-dipole strength � for kF� ¼ 0:5. The numerical
solution (solid) is higher by at least an order of magnitude
than the result of Eq. (9) (dashed).
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FIG. 3 (color online). Phase diagram for T ¼ 0:05EF, ob-
tained from Eqs. (7) and (12). The curves indicate the
Kosterlitz-Thouless (KT) transition and the � ¼ 0 line.
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In conclusion, we have shown that bilayer systems of
fermionic polar molecules which are expected to have low
inelastic losses, at the same time may allow the observation
of interesting regimes of interlayer superfluidity. These
regimes range from fermionic BCS-like superfluidity
with a relatively high Tc and Cooper pairs formed by
molecules of different layers, to quasi-BEC of interlayer
dimers, thus exhibiting a peculiar BCS-BEC crossover. For
example, by making the interlayer spacing � ’ 250 nm
one achieves kF� ’ 2 for KRb and LiCs molecules at
densities n ’ 5� 108 cm�2 corresponding to EF ’
110 nK. Then, varying the LiCs dipole moment d from
0.35 to 1.3 D by increasing the electric field to about
1 kV=cm, one obtains � ranging from 1 to 14 and covers
the entire crossover regime, with TKT of a few nanokelvin.
For KRb molecules the strongly interacting regime can be
reached for the presently achieved d ’ 0:2 D [14]
by putting a shallow in-plane optical lattice and getting
�>1 due to an increase in the effective mass of molecules.

Our results open exciting perspectives for future studies.
Imbalanced Fermi mixtures may be studied by preparing
layers with different chemical potentials (effective mag-
netic field) or with different densities. An increase in the
dipole-dipole interaction may lead to in-plane Wigner-like
dimer crystallization, and perhaps opens routes towards a
supersolid dimer gas.
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Note added.—After the completion of this work, we
learned of a recent related work of Potter et al. [32], where
interlayer dimerization and superfluidity in multistacks of
polar Fermi molecules have been considered.
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FIG. 4 (color online). Kosterlitz-Thouless transition tempera-
ture TKT and the critical BCS temperature Tc versus the dipole-
dipole strength � for kF� ¼ 0:5.
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