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We report on experiments investigating quantum transport and band interferometry of an atomic Bose-

Einstein condensate in an optical lattice with a two-band miniband structure, realized with a Fourier-

synthesized optical lattice potential. Bloch-Zener oscillations, the coherent superposition of Bloch

oscillations and Landau-Zener tunneling between the two bands, are observed. When the relative phase

between paths in different bands is varied, an interference signal is observed, demonstrating the coherence

of the dynamics in the miniband system. Measured fringe patterns of this Stückelberg interferometer allow

us to interferometrically map out the band structure of the optical lattice over the full Brillouin zone.
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The transport properties of a quantum object in a peri-
odic potential are crucially determined by the particle’s
band structure [1]. For example, Bloch oscillations, in
which a particle subjected to a uniform force in a periodic
potential performs an oscillatory rather than a uniformly
accelerated motion, can be well described by the dynamics
within a single band of the Bloch spectrum [2,3].
For systems with two bands energetically separated from
energetic higher bands (miniband structure), as can be
realized by imposing a superlattice structure onto a usual
sinusoidal lattice potential, Bloch-Zener oscillations, a
characteristic sequence of Bloch oscillations and Landau-
Zener transitions, have been predicted to occur when a
constant force is applied [4,5]. Experimentally, Bloch-
Zener oscillations have been observed for light waves in
waveguide arrays, while the phase coherence between
interfering path has not been explicitly verified [6].
Interestingly, in Bloch-Zener oscillations the avoided
crossing between the two minibands acts as a coherent
beam splitter, where partial Landau-Zener tunneling be-
tween the subbands occurs. Since the avoided crossing is
used here first to coherently split up and subsequently to
recombine atomic wave packets, we expect to be able to
observe an interference pattern, when the phase between
the path in the two different subbands is varied. This is
analogous to the Stückelberg oscillations long known in
collisional atomic physics [7–9], and the corresponding
fringe signal offers the possibility to interferometrically
map out the band structure of the optical lattice.

Stückelberg interference based on two partial Landau-
Zener transitions has been observed with Rydberg atoms
[10], superconducting systems [11,12], and in ultracold
molecular physics where this method was applied to mea-
sure Feshbach molecular levels [13]. For cold atoms in
optical lattices, vibrational frequencies and the splitting
between bands at the position of the gaps can be readily
determined by the well-established techniques of paramet-
ric heating [14], Rabi oscillations at the gaps [15], and
Landau-Zener tunneling [16]. The full band structure of an

optical lattice can be determined by Bragg spectroscopy
[17], but this requires a continuous change of the angle
between the driving laser beams [18].
Here we report on the observation of Bloch-Zener os-

cillations with ultracold atoms in an optical lattice, as a
generalization of the celebrated Bloch oscillations for a
system with a two-band miniband structure. We have also
observed an interference signal based on two partial
Landau-Zener transitions between Bloch bands of the
optical lattice. From measured fringe patterns of this
Stückelberg interferometer, the energetic splitting between
the bands at an arbitrary value of the atomic quasimomen-
tum can be determined. Thus, a novel method is realized to
interferometrically map out the band structure of an optical
lattice in situ.
Our experiment uses lattice potentials realized by super-

imposing a conventional standing wave lattice potential of
�=2 spatial periodicity with a �=4 periodicity lattice real-
ized with the dispersion of a multiphoton Raman process
[19,20]. The splitting between the lowest energetic Bloch
band and the first excited band is determined by first order
Bragg scattering of the standing wave lattice potential,
while the splitting between the first and the second excited
bands is due to the interference of contributions of second
order Bragg scattering of the standing wave lattice poten-
tial and of first order Bragg scattering of the fourth order
(�=4-spatial periodicity) lattice. By choosing a relatively
large value of the amplitude of the multiphoton lattice
potential, the splitting between the first and the second
excited bands can be made large so that the tunneling
rate to higher bands is small. In this way, a miniband
structure with two closely spaced subbands is prepared,
where in between the Landau-Zener tunneling rate is large.
In the following, V1 and V2 denote the potential depths of
the two lattice harmonics with spatial periodicities �=2 and
�=4, respectively, � is the relative phase between lattice
harmonics, and k ¼ 2�=� is the optical wave vector.
The Fourier-synthesized lattice potential reads VðzÞ ¼
ðV1=2Þ cosð2kzÞ þ ðV2=2Þ cosð4kzþ�Þ. If �1 and �2
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denote the splittings between the ground and the first
excited band, and the first and the second excited bands,
respectively [see Fig. 1(a)], �2 is maximized for a relative
phase between lattice harmonics of � ¼ 0, because the
contributions from both lattice harmonics to this splitting
then interfere constructively [20]. If �2 >�1, as is desir-
able when considering atom dynamics in the lowest two
bands, the corresponding bands are commonly called mini-
bands. In general, minibands emerge above a certain value
of the ratio of the potential depth of the harmonics:
V2=V1 > rð�;V1; V2Þ. Figure 1(a) shows the calculated
band structure of such a lattice for the experimental
parameters used.

Our experiment starts with an atomic rubidium Bose-
Einstein condensate loaded into a lattice at rest relative to
the rest frame of the atoms, so that atoms are transferred
into the lowest energy band at a quasimomentum qð0Þ ¼ 0.
Subsequently, the lattice is accelerated relative to the free-
falling atoms, which is equivalent to the application of an
external force F to the atoms, and the quasimomentum
evolves in time to larger quasimomenta, following qðtÞ ¼
qð0Þ þ F � t. By the time the atomic wave packet reaches
the first band gap, part of the wave packet experiences
Landau-Zener tunneling through the gap into the first
excited Bloch band, while the remaining part remains in
the lowest band and is Bragg reflected. The corresponding
beam splitting process is visualized in the extended band
structure scheme shown in Fig. 1(a). The splitting ratio can
be controlled by tuning the size of the gap, which to lowest
order is determined by the magnitude of V1. In this way, a
coherent superposition of wave packets in the two different
subbands of the miniband structure is created. To shift the
relative phase between the two paths, the acceleration can
be stopped at some value of the quasimomentum q0 [with
q0 ¼ qðt0Þ and @k � q0 � 3@k] for a waiting time tw. We
expect that the wave functions during this waiting time in
the two bands then evolve as (with t0 � t � t0 þ tw)

c jðtÞ ¼ c jðt0Þ exp½�iEjðq0Þðt� t0Þ=@�; (1)

where j ¼ 1 for the lowest band and j ¼ 2 for the first
excited band, respectively; E1ðq0Þ and E2ðq0Þ denote the

corresponding eigenenergies at a quasimomentum q0. In a
waiting time tw, a relative phase between the bands �’ ¼
½E2ðq0Þ � E1ðq0Þ�tw=@ is accumulated. Subsequently, the
acceleration is continued, and at a quasimomentum of 3@k
in the extended band scheme of Fig. 1(a), we again reach
the band gap between the ground and the first excited
Bloch band, where Landau-Zener tunneling acts as a sec-
ond beam splitter to recombine the two wave packets and
close the atom interferometer. The acceleration stops here
at a quasimomentum of 3@k and the lattice is switched off,
after which a time of flight image is recorded. Corres-
pondingly, the lattice eigenstates at the position of the
crossing are mapped onto the free atomic eigenstates.
Depending on the relative phase between wave packets,

atoms at the interferometer output will either be transferred
into the first or the second diffraction order in the far field
image. As a function of the waiting time tw in the accel-
eration sequence, we expect a sinusoidal fringe pattern
oscillating between the two different lattice diffraction
orders. Notably, as this fringe pattern oscillates at a
frequency ! ¼ ½E2ðq0Þ � E1ðq0Þ�=@, the oscillation fre-
quency allows us to interferometrically determine the en-
ergetic splitting between the ground and the first excited
band of the Bloch spectrum at a given value of the quasi-
momentum q0. Figure 1(b) shows a scheme of the variation
of the lattice quasimomentum with time. It is clear that
from a variation of the quasimomentum at which the
acceleration is stopped, the complete spectrum !ðqÞ of
the miniband structure can be mapped out. We expect
that this description is valid when the Landau-Zener tun-
neling rate into higher bands is small, as can be achieved
for gap sizes �2 > �1 in the miniband structure. Other-
wise, we expect a reduced number of atoms at the inter-
ferometer output due to loss into other diffraction orders.
Bloch-Zener oscillations now refer to measurements

where the relative phase between the two wave packets is
left at a constant value, as can be reached by simply setting
tw ¼ 0 (i.e. omitting the waiting time) and monitoring the
populations in the different bands versus time. In this case,
we expect that the mean atomic momentum performs a
characteristic double periodic motion with the two Bloch

periods Tð1Þ
B ¼ 2@k=F and Tð2Þ

B ¼ 4@k=F [4]. This corre-

sponds to a coherent superposition of Bloch oscillations and
Landau-Zener tunneling in the two-miniband structure.
The experimental setup we used to investigate ultracold

rubidium atoms in a Fourier-synthesized optical lattice is
similar to the one described previously in Ref. [21].
An atomic rubidium (87Rb) Bose-Einstein condensate is
produced by evaporative cooling of atoms in a quasistatic
optical dipole trap, after which the dipole trapping poten-
tial beam is extinguished, leaving the atoms in a ballistic
free fall. The vertically oriented lattice beams are activated
2.5 ms after the release of the condensate from the trap,
so that due to the lowering of the density during expansion,
the interatomic interactions are reduced. The funda-
mental spatial frequency of spatial periodicity �=2 of the

FIG. 1. (a) Band structure of the Fourier-synthesized optical
lattice potential along with the scheme of the Stückelberg
interferometer. The parameters used for the band structure
were V1 ¼ 2:7Er, V2 ¼ 3:2Er, and � ¼ 0�. (b) Variation of
the quasimomentum with time for realizing the Stückelberg
interferometer.
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Fourier-synthesized lattice potential, with which the de-
scribed miniband structure can be achieved, is created with
a standing wave detuned by 1 nm to the red of the rubidium
D2 line. A lattice with spatial periodicity �=4 is realized
with the dispersion of Doppler sensitive four-photon
Raman transitions between the ground state Zeeman sub-
levels, driven by the same laser. For more details, see the
supplementary material [22]. During the free fall of the
atoms, the lattice beams are initially switched on to
adiabatically load the atoms into the lowest band of the
Fourier-synthesized lattice at q ¼ 0. For a measurement of
Bloch-Zener oscillations, the lattice beam frequencies are
acousto-optically shifted to accelerate the lattice with re-
spect to the atoms’ rest frame with a constant acceleration
of 25 m=s2 for the experimental data shown. The depths of
the lattice harmonics were V1 ¼ 2:7Er and V2 ¼ 3:2Er,
where Er ¼ ð@kÞ2=2m denotes the recoil energy, and the
relative phase between the harmonics was � ¼ 0�.

Figure 2(a) shows the measured relative populations of
the different diffraction orders of the lattice after a variable
acceleration time t. The data allow us to follow the wave
packet motion in the miniband Bloch band structure [see
Fig. 1(a)] in time. When F � t � @k, the band gap between
the ground and the first excited Bloch band is reached and
the acceleration over this gap causes a first beam splitting
process due to partial Landau-Zener tunneling. We observe
a subsequent decrease of the population of the zeroth
diffraction order (data with triangles) and an increase of
the population of the first diffraction order to roughly 40%
(filled circles). At the time when F � t � 2@k, the zeroth
order peak is Bragg deflected into the second order peak
(data with open squares); i.e., only the mapping onto the
free eigenstates changes. When F � t � 3@k is reached, a
partial Landau-Zener transition occurs with the relative
phase between wave packets for the data set shown being
such that most of the population is transferred into the
lowest energy band, which after the crossing maps onto
the second diffraction order, and the observed correspond-
ing relative population then increases to roughly 85%. The
difference to 100% here is mainly due to partial Landau-
Zener tunneling into higher bands (see the nonvanishing
population of the zeroth order peak (triangles) at this time).
For larger times, a second cycle of the wave packet motion
in the miniband structure is observed. We attribute the
corresponding data as evidence for Bloch-Zener oscilla-
tions in the Fourier-synthesized optical lattice. Figure 2(b)
gives the mean velocity of the atoms in the coaccelerated
frame versus time, as derived from the data of Fig. 2(a). We
note that the relative phase between wave packets acquired
during the sequence depends on the parameters of the
lattice potential used (amplitudes of the harmonics and
relative phase). When the splitting between the bands is
varied so that a different phase is acquired between the
partial Landau-Zener transitions, after the second splitting
(for which F � t � 3@k) the population can, alternatively,
also be mostly transferred into the first order peak, or
partially into the first and second order peaks.

Figure 3(a) shows data where the relative phase was
varied between the two interfering paths of the formed
Stückelberg band interferometer. For the corresponding
measurement, the acceleration sequence was stopped after
the first beam splitting process at a certain value of the
quasimomentum q0 (with q0 ¼ 1:9@k for the data shown
here) for a variable waiting time to induce a variable phase
shift. The filled (open) circles in Fig. 3(a) give the mea-
sured population in the first (second) order Bragg peak
after releasing the condensate from the lattice when reach-
ing a quasimomentum of 3@k. As a function of the waiting
time tw, which, due to the energy difference of the two
bands, tunes the accumulated relative phase, a clear inter-
ference pattern in the relative population of Bloch bands is
observed at the interferometer output. The observed inter-
ference signal of this Stückelberg interferometer was found
to be very robust, as the additional variable waiting time tw
at a constant potential depth allows for a controlled tuning
of the relative phase between the interfering arms of the
interferometer for a broad set of experimental parameters.
Let us point out that the Stückelberg interferometer may
also be operated with two fully symmetric beam splitters
when continuing the acceleration beyond the second beam
splitter, i.e. for example, up to a quasimomentum of 3:5@k.
A numerical simulation indicates that the expected fringe
contrast for both cases is quite comparable.
From the measured oscillation frequency of the

Stückelberg interference signal shown in Fig. 3(a), the
energy difference between the Bloch bands at the corre-
sponding quasimomentum can readily be determined. We
attribute the observed damping of the fringe signal for
large times tw to the finite velocity spread of atoms after
their release from the trap. By the time of the experiment,
the condensate interaction energy has been converted into
kinetic energy. The corresponding velocity spread is ex-
pected to cause a nonzero width of the quasimomentum
distribution in the lattice. This will lead to a spread of

FIG. 2. Experimental data for Bloch-Zener oscillations of
atoms in the biharmonic lattice potential, which was accelerated
with a constant acceleration relative to the atomic rest frame.
Here the quasimomentum F � t ¼ 4@k is reached after an accel-
eration time of t ¼ 955 �s. (a) Relative population of diffraction
orders versus time: zeroth order (triangles), first order (filled
circles), second order (open squares), third order (filled squares),
and fourth order (open circles), respectively. The solid line is to
guide the eye. (b) Mean atomic velocity (circles) in the comov-
ing frame versus time, where vr ¼ @k=m denotes the recoil
velocity and m the atomic mass. The solid line is a spline fit.
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oscillation frequencies of the Stückelberg interference sig-
nal, and a corresponding loss of contrast for larger times tw.
The solid and dashed lines in Fig. 3(a) are fits to the
experimental fringe signal with a convolution of sinusoidal
curves to account for the loss of contrast for larger times tw
(for a measured atomic velocity spread of �0:8@k for this
data set). We note that in a quantum simulation view of our
two-band Bloch structure experiment, the observed oscil-
lation frequency can be interpreted as a beating occurring
at the ‘‘quasirelativistic’’ Zitterbewegung frequency
[23,24]. Figure 3(b) shows the derived energy splitting
between the ground and the first excited Bloch band of
the miniband structure as a function of the quasimomen-
tum for the complete Brillouin zone. The solid line is the
theoretically expected curve of the energy difference for
the given experimental parameters of the potential depths
and relative phase of lattice harmonics, which is in good
agreement with the corresponding experimental values.
The smaller variation of the measured energy difference
over the Brillouin zone with respect to the theoretical curve
is attributed to the nonzero atomic velocity spread.

To conclude, we have observed Bloch-Zener oscillations
in an optical lattice with a miniband-type Bloch band struc-
ture. The relative phase of wave packets in different Bloch
bands was varied, which has allowed us to demonstrate the
coherence of the formed Stückelberg interferometer and to
demonstrate a novel method to interferometrically map out
the energy difference between bands over the complete
Brillouin zone.

We expect that the method described has prospects for
precise interferometric determinations of the band struc-
ture in optical lattices. The velocity spread of the atoms can
be reduced by Raman selection [25]. In principle, the
method should also be applicable to usual standing
wave lattices when, during the acceleration sequence, the
Landau-Zener tunneling rate between Bloch bands is tai-
lored dynamically either by appropriate variation of the

potential depth of the lattice, similar to that described in
[26], or by variation of the acceleration rate with time. For
example, when the ramp speed is correspondingly reduced
in the vicinity of the crossing between the first two excited
bands, the tunneling rate to higher bands can be kept small.
Other prospects for the discussed coherent manipulation in
the miniband structure can include quantum simulations of
the (linear and nonlinear) Dirac equation [24,27]. The
interferometric method described may also be used to
test for deviations of Newton’s law over microscopic dis-
tances, in a spirit similar to earlier experiments based on
Bloch oscillations [28].
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FIG. 3. (a) Measured Stückelberg interference fringes based on
two partial Landau-Zener transitions between the band gaps of
the optical lattice. The filled (open) circles give the measured
relative population in the first (second) diffraction, respectively,
versus the waiting time tw, with q0 ¼ 1:9@k for this data set. The
dashed and solid lines are fits to the data. (b) The data points give
the interferometrically determined energy difference between
the two minibands versus the lattice quasimomentum in the
atomic frame. The solid line is the calculated energy difference.

PRL 105, 215301 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 NOVEMBER 2010

215301-4

http://dx.doi.org/10.1103/PhysRevB.46.7252
http://dx.doi.org/10.1103/PhysRevLett.76.4508
http://dx.doi.org/10.1088/1367-2630/8/7/110
http://dx.doi.org/10.1088/1367-2630/8/7/110
http://dx.doi.org/10.1088/1367-2630/9/3/062
http://dx.doi.org/10.1088/1367-2630/9/3/062
http://dx.doi.org/10.1103/PhysRevLett.102.076802
http://dx.doi.org/10.1016/j.physrep.2010.03.002
http://dx.doi.org/10.1016/j.physrep.2010.03.002
http://dx.doi.org/10.1103/PhysRevLett.69.1919
http://dx.doi.org/10.1103/PhysRevLett.69.1919
http://dx.doi.org/10.1126/science.1119678
http://dx.doi.org/10.1103/PhysRevLett.96.187002
http://dx.doi.org/10.1103/PhysRevLett.99.113201
http://dx.doi.org/10.1103/PhysRevA.57.R20
http://dx.doi.org/10.1103/PhysRevA.68.051601
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/PhysRevLett.102.155301
http://dx.doi.org/10.1038/nphys1476
http://dx.doi.org/10.1103/PhysRevA.74.063622
http://dx.doi.org/10.1103/PhysRevLett.99.190405
http://dx.doi.org/10.1103/PhysRevLett.91.240408
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.215301
http://link.aps.org/supplemental/10.1103/PhysRevLett.105.215301
http://dx.doi.org/10.1103/PhysRevLett.100.153002
http://dx.doi.org/10.1103/PhysRevLett.100.153002
http://dx.doi.org/10.1038/nature08688
http://dx.doi.org/10.1103/PhysRevLett.67.181
http://dx.doi.org/10.1103/PhysRevLett.67.181
http://dx.doi.org/10.1103/PhysRevLett.103.090403
http://dx.doi.org/10.1103/PhysRevLett.104.073603
http://dx.doi.org/10.1103/PhysRevLett.97.060402

