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A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including

anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to

the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a

consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter

confined region, while an almost uniform temperature is produced when the magnetic field lines become

chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which

allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature

distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The

magnetic field is also affected by the presence of an anisotropic thermal conductivity.
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A reversed-field pinch (RFP) is a toroidal configuration
for magnetic confinement of fusion plasmas. Differently
from the tokamak, most of the magnetic field is generated
by currents flowing in the plasma, through a dynamo effect
produced by magnetohydrodynamic (MHD) instabilities
[1–3]. In the past, a broad spectrum of instabilities was
considered necessary for the sustainment of the configura-
tion. Such instabilities are also responsible for a stochasti-
zation of the magnetic field, due to the superposition of
many unstable modes. This kind of configuration, where
many MHD modes of comparable amplitudes are present,
are called multiple helicity (MH) states. The magnetic
chaos characterizing MH states is a problem for energy
confinement. However, it has been shown that, in principle,
the RFP can also be obtained with a dynamo effect pro-
duced by a single mode [4]. In such a configuration, called
single helicity (SH) state, the magnetic field is not chaotic
and conserved magnetic surfaces exist. In recent years,
quasisingle helicity (QSH) states, where a dominant
mode exists together with small amplitude secondary
modes, have been observed in different machines [5–9]
and numerical simulations [10]. QSH states have been
observed to appear spontaneously, alternating with MH
states. Experiments show that the persistence of QSH states
increases with the Lundquist number and plasma current
[11]. Two classes of QSH states have been observed in
experiments. In the first case, there is a magnetic island
with a separatrix and two magnetic axes, the original
magnetic axis and a helical magnetic axis corresponding
to the island O point. The second class of QSH states is
formed when the dominant mode grows above a certain
threshold, the separatrix and the original magnetic axis
disappear, and a single helical magnetic axis remains
[11]. This second class of QSH states has been named
single helical axis and they have improved confinement
properties.

The possibility of obtaining QSH states is important in
order to achieve better confinement properties. InMH states
the temperature is almost flat in the plasma core, while in
QSH states strong temperature gradients appear and a hot
structure is formed in coincidencewith themagnetic island,
indicating that a better thermal confinement is obtained in
the magnetic island [11,12]. A reduction of energy and
particle transport has been observed in QSH states with
respect to MH states [13–15]. The different behavior of
temperature in MH states and in QSH states is due to the
strong anisotropy of the thermal conductivity. In fact, the
thermal conductivity in a magnetized plasma is anisotropic
with respect to the direction of the magnetic field, and in a
fusion plasma the ratio�k=�?may exceed 1010 [16] (�k and
�? are the parallel and perpendicular thermal conductiv-
ities). While in the perpendicular direction the thermal
conductivity is very small, in the parallel direction it has
the effect of making magnetic field lines isothermal. As a
consequence, in MH states, where the magnetic field is
chaotic, the radial heat transport is more efficient than in
QSH states, where well conserved magnetic surfaces exist.
Numerical MHD simulations of the RFP were usually

performed with the assumptions of constant density and
pressure, so that a description of temperature was not
available [10,17]. Some progress in the numerical study
of the RFP has been made including density and pressure
dynamics [18–20]. Indeed, a self-consistent treatment of
density and pressure dynamics gives better control of the
physics involved in the RFP evolution. However, a realistic
value of the parallel thermal conductivity in the energy
equation would introduce a time scale much shorter than
the other typical time scales characterizing the system
evolution. The resolution of such a short time scale would
require an extremely small time step and the simulation
would be out of the possibilities of any computing system.
For this reason, up to now, simulations using explicit time
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schemes were performed either with vanishing thermal
conductivity or with an isotropic thermal conductivity
(�k ¼ �?). On the contrary, in this Letter we have set up

a new numerical technique which allows us to solve MHD
compressible equations when �k � �?. We show that the

different behavior of temperature observed in QSH and
MH states can be reproduced in numerical simulations
including an anisotropic thermal conductivity.

We solve the compressible MHD equations in cylindri-
cal coordinates (r; �; z), in dimensionless form [19–21],
writing the heat flux in the form

q ¼ �krkT þ �?r?T: (1)

The magnetic field and density are normalized to typical
values B0 and �0, respectively. The radius a of the cylinder
is used as unit length scale and time is normalized to the
typical Alfvén time �A ¼ a=vA, where vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffiffiffi
4��0

p
is

the Alfvén velocity. Finally, the pressure p is measured in
units of �0v

2
A and the temperature is T ¼ p=�. The nu-

merical code uses a pseudospectral method in the periodic
directions (� and z), compact differences in the radial
direction, and an explicit Runge-Kutta time scheme.

Boundary conditions are imposed assuming that the
plasma is bounded by a rigid wall acting as a perfect
conductor [19], with constant temperature. No-slip bound-
ary conditions are imposed on velocity. The current density
J� and Jz vanish at the conducting boundary, except for the
m ¼ 0, n ¼ 0 mode (m and n are the poloidal and toroidal
mode numbers, respectively). For the ð0; 0Þ mode we im-
pose constant poloidal magnetic field at the boundary,
which corresponds to a constant toroidal current, and con-
stant toroidal magnetic field, which is obtained with the
external toroidal field coils. A time dependent boundary
condition for density is derived using a characteristic wave
decomposition [22]. It is described in detail in Ref. [21]
and it corresponds to the reflection of fast magnetosonic
waves at the walls. The set of boundary conditions used in
this simulation is different from that used in [20], because
we impose a constant toroidal magnetic field for the ð0; 0Þ
mode instead of constant toroidal flux. The condition used
in this Letter is closer to experimental conditions, where
the toroidal magnetic field at the edge is directly deter-
mined by the external coils [3].

As the initial state, a force-free equilibrium magnetic
field has been chosen [20]. The initial density and pressure
are uniform, with � ¼ 1 and p ¼ 0:05.

To overcome the difficulty of using a realistic value of
�k we perform a multiple-time-scale analysis [23] of the

MHD compressible equations. In particular, we consider
that the evolution equation for pressure p contains a term
�krkT which can be associated with a time scale much

shorter than all other terms. Therefore, we can write the
equation in the following form:

@p

@t
¼ ��½r � ðvp� �?r?TÞ þ ð�� 1Þpr � v�

þ �ð�� 1ÞHp þ r � ð�krkTÞ; (2)

with � � 1 and Hp is the heat production due to viscosity

and resistivity. We expand p in the small parameter �

p ’ p0 þ �p1 þ �2p2 þ � � � : (3)

Moreover, we introduce new time variables �0; �1; �2; . . . ,
such that

d�0
dt

¼ 1;
d�1
dt

¼ �;
d�2
dt

¼ �2; . . . : (4)

The freedom introduced by extending the number of
time variables can be used to remove the time secularities
in the solution. This allows us to separate fast time scales
from slow time scales, and to obtain the equations

@p0

@�0
¼ r �

�
�krk

�
p0

�

��
; (5)

@p0

@�1
¼ �

�
r �

�
vp0 � �?r?

p0

�

�
þ ð�� 1Þp0r � v

�

þ ð�� 1ÞHp: (6)

The other equations that must be solved are of order �1;
i.e., they evolve on the time scale �1. After each time step
��1 we solve numerically Eq. (5) until p0 reaches an
asymptotic value. It is worth noting that, due to the fact
that �k � �?, we do not need to use in Eq. (5) the exact

value of the physical parallel thermal conductivity, but
only a numerical parameter that determines the time
needed to find an asymptotic stationary solution for p0.
The solution of Eq. (5) has the effect of producing isother-
mal magnetic field lines and the result is independent of the
specific value of �k, which has been chosen �k ¼ 1. Then
we substitute p0 in Eq. (6) and in the other equations that
must be solved and perform the subsequent time step ��1.
The simulation has been carried out with the following

parameters:

� ¼ 10�3; 	 ¼ 10�3; �? ¼ 10�3; (7)

R ¼ 4; qð0Þ ¼ 0:1; (8)

where � and 	 are the dimensionless resistivity and vis-
cosity, respectively, R is the aspect ratio, and qð0Þ is the on-
axis safety factor. We perturbed the initial equilibrium by
exciting a few modes close to the most unstable one.
In Fig. 1 we plot the time evolution of the reversal

parameter F ¼ Bð0;0Þ
z ðaÞ=hBzi, where Bð0;0Þ

z ðaÞ is the ð0; 0Þ
mode amplitude of the toroidal field at the boundary and

hBzi is the average of Bð0;0Þ
z over a poloidal cross section. In

the beginning, the resistive diffusion makes the toroidal
flux decrease, causing a decrease of F. After t ’ 500 a
stationary state is reached where an equilibrium is obtained
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between dissipation and the dynamo effect produced by the
unstable modes. Since the boundary conditions impose that
the toroidal and poloidal fields at the edge are constant in
time, the evolution of the toroidal flux and of the pinch

parameter � ¼ Bð0;0Þ
� ðaÞ=hBzi are only determined by the

evolution of the reversal parameter. The toroidal flux is
inversely proportional to F, while � is proportional to F.
To show the transition between MH and SH states, the
spectral index Ns has been plotted in Fig. 1. As usual, the
parameter Ns is defined as [24]

N�1
s ¼ X

n

0
B@ B2

1;nP
n
B2
1;n

1
CA

2

; (9)

where

B2
1;n ¼

Z 1

0
jB1;nj2rdr: (10)

The parameterNs is equal to 1 in SH states. Figure 1 shows
many oscillations in the evolution of Ns, which indicates
the presence of QSH states at t ’ 50 and in the interval
between t ’ 200 and t ’ 400.

In Figs. 2 and 3 we show temperature contours and
Poincaré plots of the magnetic field in the plane z ¼ 0 in
a QSH state and in a MH state. At t ¼ 260 the system is in

a QSH state and a dominant m ¼ 1, n ¼ �8 mode is
visible in the temperature distribution. A hot island is
present corresponding to the magnetic field bean-shaped
region. A chaotic region is visible, but magnetic surfaces
also exist and magnetic field lines do not connect the hot
bean-shaped region in the core with the cold region near
the boundary. On the other hand, in the MH state at
t ¼ 1000 the magnetic field is completely chaotic and
the large parallel heat transport makes the temperature
much more uniform. As expected, magnetic field lines
are almost isothermal. This is also visible in Fig. 4, where
a temperature profile is plotted along a diameter at
� ¼ �=2 and z ¼ 0. At t ¼ 260 the temperature profile
shows the presence of a hot island, while at t ¼ 1000 it
becomes almost flat in the central region. Notwithstanding
the initial uniform density profile, at later times density
becomes spatially modulated, with low values corres-
ponding to the hotter region, and finally in the stationary
state it shows an almost flat central region, decreasing near
the wall.
For comparison, a second simulation has been per-

formed with the same parameters and the same boundary
conditions, but with isotropic thermal conductivity
� ¼ 10�3. In Figs. 5 we show temperature contours and
Poincaré plots of the magnetic field in the plane z ¼ 0 at

FIG. 1. Time evolution of the reversal parameter F (solid line)
and of the spectral spread Ns (dashed line) in the simulation with
anisotropic thermal conductivity.

FIG. 2 (color online). Poincaré maps of the magnetic field
(white dots) and contours of temperature in the plane z ¼ 0 at
t ¼ 260. Simulation with anisotropic thermal conductivity.

FIG. 3 (color online). Poincaré maps of the magnetic field
(white dots) and contours of temperature in the plane z ¼ 0 at
t ¼ 1000. Simulation with anisotropic thermal conductivity.

FIG. 4. Temperature profiles along the diameter � ¼ �=2 and
z ¼ 0 at t ¼ 260 (solid line) and t ¼ 1000 (dashed line).
Simulation with anisotropic thermal conductivity.
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t ¼ 260. At this time the spectral index Ns is close to 1 and
a dominant m ¼ 1, n ¼ �8 mode is visible in the tem-
perature distribution, but the presence of a m ¼ 2 mode
with amplitude comparable to the dominant mode makes
the magnetic field chaotic, except in the outer region,
where some magnetic surfaces are visible. In Fig. 5 a hot
island is still present, even though the magnetic field is
chaotic. At t ¼ 1000, magnetic surfaces are also destroyed
in the outer region, but the temperature contours show the
existence of a hot bean-shaped structure in the poloidal
plane. It is worth noting that the presence of an anisotropic
thermal conductivity does not only modify the temperature
distribution, but it also has important dynamical effects on
the magnetic field evolution. In fact, the magnetic field
shown in Fig. 2 is significantly different from that obtained
with an isotropic thermal conductivity (Fig. 5). These
results are different from those described in [20], where
different boundary conditions were used. In that case,
constant toroidal flux was imposed, while in the present
simulation this condition has been replaced by a constant
toroidal field for the ð0; 0) mode at the edge. In the simu-
lation presented in [20], a stationary state with negative F
was not obtained and the evolution of the spectral index Ns

indicated the existence of a QSH state between t ’ 50 and
t ’ 150.

The results obtained with anisotropic thermal conduc-
tivity show a good correspondence of temperature contours
with magnetic field lines and are similar to experimental
observations, where there is a relation between the tem-
perature distribution and the magnetic field topology. In
QSH states large temperature gradients are produced, with
the formation of a hot bean-shaped island, while in MH

states the temperature becomes almost flat. Our results
show that the temperature behavior observed in QSH and
MH states can be produced as the effect of an anisotropic
thermal conductivity. This is a key ingredient that should
be included in simulations in order to reproduce a realistic
evolution of the system.
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