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The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally

relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear

values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature

gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also

increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range

near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found:

for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly

higher temperature and flow gradients.
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Introduction.—Turbulent transport of heat is a major
obstacle to the development of a successful fusion device.
Turbulence powered by microinstabilities such as the ion
temperature gradient (ITG) instability rapidly transports
heat out of the plasma, limiting the temperature gradient
that can be sustained by a given input of heat, and thus the
temperature that can be reached at the core of the plasma.
The problem is exacerbated by the strong dependence of
the turbulent amplitudes on the driving gradients, which in
general keep the gradient not far above the critical thresh-
old for the onset of the instability, a phenomenon known as
stiff transport [1].

Experimental evidence [2,3] suggests that a sheared flow
in the plasma greatly improves the situation; such a flow
can significantly reduce turbulent fluxes for given values
of the driving gradients. In some cases a large enough shear
can help quench the turbulence altogether [4,5]. Flow shear
may also reduce the sensitive dependence of heat flux
upon temperature gradient (the ‘‘stiffness’’) [6]. Several
of these results have been confirmed in numerical simula-
tions [7–11], but the picture remains incomplete. Further-
more, while in simulations one may specify the flow shear,
in experiment the control parameters are the input of heat
and momentum. A set of simulations would ideally show
not only that a large flow shear is beneficial, but also how it
may be achieved.

A recent paper [12] has demonstrated the basic proper-
ties of turbulence in the Cyclone Base Case [13] regime
(concentric circular flux surfaces with q ¼ 1:4, r=R0 ¼
0:18, R0�ii=vthi ¼ 0:01, where q is the magnetic safety
factor, r the half diameter of the flux surface measured in
the midplane, R0 the major radius at the magnetic axis, vthi

the ion thermal velocity and �ii the ion-ion collision fre-
quency) at a finite value of magnetic shear. It was found
that the ITG-driven turbulence was quenched at suffi-
ciently high flow shear, but the ITG was replaced as the

driver of the turbulence by the parallel velocity gradient
(PVG) [14,15]. At large flow shears, the system was line-
arly stable, but strong subcritical PVG-driven turbulent
transport could be sustained at sufficiently large tempera-
ture gradient.
In this Letter we consider the case where the shear of the

magnetic field is zero, which experimental observations
have indicated is favorable for quenching turbulence. It is
found that the plasma is now linearly stable for all nonzero
values of flow shear, and that there is a much larger range
of flow shear and ITG values where the turbulence is
completely quenched. It is shown that because of this
(and when neoclassical transport is taken into account)
there is a steady-state bifurcation in the flow and tempera-
ture gradients, for certain values of input heat and applied
torque [16]. A positive feedback between the suppression
of turbulence and the input of momentum can cause a one-
way jump in both gradients.
Theoretical framework.—The work reported in this

Letter follows on from that carried out in [12], which
contains a more detailed exposition of the model used.
All simulations have been carried out using the code GS2

[17], which solves the local nonlinear gyrokinetic equation
in the presence of a sheared toroidal flow R! [18,19],
where R is the major radius of the tokamak and ! is the
toroidal angular velocity. The flow is ordered as smaller
than the ion thermal velocity in a Mach-number expansion:
R!�Mvthi where �i=R � M � 1 and �i is the ion
Larmor radius. In order to ensure that the effect of the
flow shear is retained, the gradient of the flow is then
ordered as the inverse of the Mach number (d ln!=d lnr�
1=M), so that the flow shear is of order the fluctuation
frequency and the particle streaming rate: �E ¼ ðr=qÞd!=
dr� vthi=R. Using this expansion, the effects of the
sheared toroidal flow are included in GS2 [10,20], by
adding a time dependence to the radial wave numbers
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and a drive term associated with the PVG. All simulations
reported here are electrostatic with a modified Boltzmann
electron response. Typical resolution was 32� 64� 14�
4� 8 (poloidal, radial, parallel, pitch angle, energy).

The gyrokinetic ordering is used to close the moment
equations in the transport model [19,21]. The turbulent
fluxes of heat and toroidal angular momentum, Qt and
�t, respectively, can then be calculated from the perturbed
ion distribution function �f as the flux surface averages of
the convection of those quantities by the fluctuatingE� B
velocity [19].

Subcritical turbulence.—With the flow shear �E equal to
zero, the fluctuation amplitude grows exponentially with
time (Fig. 1). As the flow shear increases from zero, how-
ever, the growth becomes transient, and switches to decay
after a time �� which decreases with increasing �E (inset to

Fig. 1). This is in qualitative agreement with recent theo-
retical [15], and numerical [12] results at a finite value of
magnetic shear, except that at zero magnetic shear we
observe that there are no growing eigenmodes for any
nonzero value of �E.

With this in mind, it might be expected that there would
be no turbulence for �E > 0. However, linear instability is
not necessary to sustain nonlinear turbulence in a rotating
plasma; in fact, the transient growth caused by the ITG or
PVG drive is sufficient to give rise to subcritical turbulence
in simulations initialized with sufficient-amplitude noise
(or fully developed turbulence). Thus, there is turbulence,
but it is subcritical for all finite flow shears (in contrast with
the finite magnetic shear case [12]).

Heat flux.—Considering the dependence of turbulent
heat flux on the flow shear, Fig. 2(a), we observe that for
lower values of the temperature gradient, viz. R0=LT &
11:5, where LT is the temperature gradient scale length,Qt

decreases smoothly to zero with increasing flow shear.

The turbulence is then fully quenched for a range of flow
shears, but then the PVG drive becomes so large that
turbulence is reignited. For larger values, R0=LT > 11:5,
the turbulence is never quenched;Qt merely decreases and
rises again, which echoes results in [12]. We stress, how-
ever, that turbulence is quenched at lower values of flow
shear and higher values of R0=LT than in [12], and so there
is a much wider range of parameter space where the flow
shear is large enough to quench the ITG-driven turbulence,
but not large enough to drive PVG turbulence. This more
favorable regime is what enables the transport bifurcations
described below.
Examining the dependence of the heat flux on R0=LT ,

Fig. 3 shows that at �E � 0:4, there are two nonlinear
thresholds [Fig. 3(c)], which both increase with flow shear.
Below the first threshold turbulence is completely
quenched; between the first and second thresholds Qt

increases slowly, and above the second it rapidly rises to
values similar to the case without flow shear. Thus, flow
shear significantly increases the overall temperature gra-
dient required for turbulence, reduces the transport stiff-
ness dramatically between the first and second thresholds
(i.e., at low values of Qt), but increases the stiffness above
the second threshold [Fig. 3(d)]. For �E � 0:8 there is only
one threshold, which decreases to 0 with increasing flow
shear, [Fig. 3(b)], as the PVG drive increases. Stiffness is
low but all the fluxes are very large.
Momentum flux.—The story of the toroidal angular mo-

mentum flux �t is quite simple. Defining the turbulent
viscosity as �t ¼ ð�t=�EÞðr=nimiR

2
0qÞ, the turbulent heat

diffusivity as �t ¼ ðQt=ðR0=LTÞÞðR0=ðniTiÞÞ (wheremi, ni
and Ti are the mass, density and temperature of the ions),
the turbulent Prandtl number, Pr ¼ �t=�t, was in the
range 1.0–1.8 in all our simulations, with only a very
weak dependence on the gradients. In other words

FIG. 1 (color online). Linear behavior: the time evolution of
the heat flux, normalized to its initial value, for different values
of �E at R0=LT ¼ 11. Growth is transient for all nonzero flow
shears, and the length of the period of transient growth decreases
with flow shear. Dashed curve is subcritically stable (no turbu-
lence sustained nonlinearly). Inset: Inverse transient growth
time, and the number of exponentiations the heat flux undergoes
before switching to decay, both vs flow shear.

FIG. 2 (color online). Turbulent heat flux (a) and toroidal
angular momentum flux (b) vs flow shear for different values
of R0=LT . For lower values of R0=LT , there is a range of flow
shears where the turbulence is fully quenched.
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�t=Qt / �E=ðR0=LTÞ; the turbulence transports heat and
momentum in equal proportions.

Figure 2(b) details this behavior: �t rises with �E,
reaches a local maximum, drops, then rises again as the
PVG starts to add significantly to the ITG turbulence drive.
As with the heat flux, there is a window of zero turbulent
transport for R0=LT & 11:5. The extent of this window in
�E and R0=LT is shown in Fig. 3(c).

Quenching turbulence.—At this point we abandon the
use of �E and R0=LT as independent variables, since the
actual control parameters in a fusion device are the total
rates of input of heat and momentum by external sources.
If we assume a steady state, the rates of input of these
quantities are equal to their outgoing fluxes, i.e. Q and �.
In a practical manner, a question may be posed: in choos-
ing Q and�, how can the temperature gradient, and hence
the temperature at the core of the plasma, be maximized?
Since the input of infinite amounts of heat is not possible,
the turbulence must be quenched.

If turbulent transport is reduced, collisional transport
becomes important. For tokamaks, a quantative theory
of this transport, known as neoclassical theory, exists
[22]. For the case of circular concentric flux surfaces in
the banana regime (�ii � qR0=vthi) studied here, the

neoclassical thermal diffusivity and viscosity are �n ’
0:66ðR=rÞð3=2Þq2�2

i �ii and �n ’ 0:1q2�2
i �ii. So the total

heat flux Q ¼ Qt þQn where Qn ¼ �nðR0=LTÞniTi=R0,
and the total toroidal angular momentum flux � ¼ �t þ
�n where �n ¼ �n�EnimiR

2
0q=r.

The essential point is that the neoclassical Prandtl num-
ber, �n=�n ’ 0:01, is much smaller than the turbulent
Prandtl number: turbulence is much more effective at
transporting momentum than collisions alone. It should
be noted that provided this is satisfied, the qualitative
results of the next section do not depend on the exact
values of the neoclassical transport coefficients.
Triggering a transition.—Let us now consider

what happens when we increase �=Q at constant Q.
Figure 4(a) shows a curve where the heat flux is held
constant at Q ¼ 2:6 niTivthi�

2
i =R

2
0. As �=Q is increased,

initially, because Q is being held constant, the suppression
of the turbulence caused by an increase in �E causes a
corresponding increase in R0=LT , which restores the tur-
bulence to its former levels. However, at the point where
R0=LT becomes so large that Qt �Qn, this negative feed-
back is broken, because Qn does not depend on �E.

FIG. 3 (color online). Turbulent heat flux vs R0=LT for
(a) �E � 0:8 and (b) �E > 0:8. (c) Nonlinear turbulence thresh-
olds vs flow shear. For each value of R0=LT , the 1st-threshold
curve shows the 2 values of �E at which the turbulence is
quenched and then rekindled (cf. Fig. 2). For R0=LT * 11:5 or
�E * 1:8, the turbulence is always present. (d) Profile stiffness
vs the flow shear. Low Qt refers to fluxes between the first and
second thresholds; High Qt to fluxes above both thresholds.

FIG. 4 (color online). (a) The ratio of the total momentum flux
� to the total heat fluxQ vs flow shear for a constant value of Q.
An increase in applied torque (i.e., an increase in �=Q) at point
A will cause a transition to point B. (b) Total heat flux Q vs
R0=LT for different constant values of�=Q. The points A and B
on both graphs correspond to the same states. Since neither Q
nor � can be specified for a simulation (with the exception of
� ¼ 0), the contours of constant Q and �=Q were interpolated
from a large number of data points using radial basis functions
with a linear kernel [23]. Also plotted are the neoclassical
contributions to�=Q andQ. The contours in (b) do not intercept
the neoclassical line but curl round and asymptote to it, tending
back to the origin, and thus point B is in fact on the same contour
as point A (see text and [24]). This feature cannot be shown as
the contours are too closely spaced for interpolation near the
neoclassical line.

PRL 105, 215003 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 NOVEMBER 2010

215003-3



The turbulence is greatly reduced and yet the heat flux
remains unchanged because the bulk of the heat is being
transported neoclassically. The same is not true of the
momentum, owing to the much lower neoclassical Prandtl
number: because of the reduction in turbulent amplitudes,
the transport of momentum drops dramatically. This causes
a large increase in the flow shear gradient, which rekindles
turbulence which then transports momentum once again. In
other words, when the magnitude of �=Q is increased
above 0.06 R0=vthi, there is a transition from point A to
point B on Fig. 4(a).

Figure 4(b) shows the same transition on the (Q, R0=LT)
plane where contours of constant �=Q are plotted. �E

increases along these contours from high Q and low
R0=LT to lowQ and high R0=LT . As �E increases, initially
Q drops rapidly because of turbulence suppression by flow
shear, until Qn starts to become significant. At this point,
because�=Q ’ �t=ðQt þQnÞ,�t must increase again to
keep �=Q constant. As flow shear increases further, how-
ever, �t=Qt becomes so large (Fig. 2) that the turbulence
amplitude, and hence Qt, must start to decrease again to
maintain a constant �=Q. Thus the curve asymptotes to
the neoclassical line, and the system ends up in a state
where the heat transport is nearly all neoclassical, but the
momentum transport is nearly all turbulent. Points A and B
correspond to points A and B on 4(a). Point B is not on
the neoclassical line in Fig. 4(b), but corresponds to a
(slightly) turbulent state [as can be seen from Fig. 4(a)],
where the large �E means that �t is significant even
though Qt � Qn. The location of point B on 4(b) was
calculated from 4(a) using the relation �t � �t. During the
transition R0=LT jumps from 7.4 to 10.4. Including the
original suppression, flow shear has enabled a total jump
(at constantQ) from R0=LT ’ 4:5 at�=Q ¼ 0 [point C on
Fig. 4(b)], to R0=LT ’ 10:4 at �=Q ’ 0:06.

Conclusions.—In summary, we have shown that
although the plasma is linearly stable for all finite values
of flow shear, transient growth is sufficient to allow sub-
critical turbulence to be sustained nonlinearly. At low
values, flow shear reduces transport in two ways: by dra-
matically increasing the threshold temperature gradient
required to drive turbulence, and, over a small range of
temperature gradients, by reducing the strength of the
dependence of the fluxes on the temperature gradient (the
stiffness). At the top of that small range there is a second
threshold, above which the fluxes rapidly rise to levels seen
with no flow shear. High values of flow shear can in fact
increase the transport.

Perhaps more importantly, we have discovered a tran-
sition to a higher-gradient regime. The transition occurs
when either the input of heat has been reduced or the input
of momentum increased to the point where the bulk of the
heat is transported neoclassically and the ion temperature
gradient is no longer driving sufficient turbulence to trans-
port the toroidal angular momentum. A positive feedback
loop starts where the build up of the velocity gradient

reduces the turbulence further until it becomes sufficient
to drive turbulent transport via the PVG instability. A new
stable equilibrium is reached with much higher tempera-
ture and flow gradients, and where the heat transport is
nearly neoclassical.
The specific numbers associated with this transition are

likely to depend significantly on the plasma configuration;
for example, the value of q may have a large effect [8].
Extending this work to other regimes, in particular, more
experimentally realistic configurations, would thus be of
interest. However, qualitatively we have shown not only
that there exist equilibrium states with equal fluxes yet
different gradients, but that, with the right conditions,
less favorable regimes can automatically transition to
more favorable ones with higher gradients.
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