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We report the observation of a Plateau instability in a thin filament of solid gel with a very small elastic

modulus. A longitudinal undulation of the surface of the cylinder reduces its area thereby triggering

capillary instability, but is counterbalanced by elastic forces following the deformation. This competition

leads to a nontrivial instability threshold for a solid cylinder. The ratio of surface tension to elastic

modulus defines a characteristic length scale. The onset of linear instability is when the radius of the

cylinder is one-sixth of this length scale, in agreement with theory presented here.
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The Rayleigh-Plateau instability (RPI) [1–4] results from
the tendency of a given volume of liquid to reduce its area at
constant volume. The area of a geometrical cylinder is
obviously not at a minimum, this one being reached, as is
well known, for a sphere. A long-wave modulation of the
surface of a cylinder is unstable: near the maxima of
the radius, the Laplace pressure, which is dominated by the
azimuthal curvature, decreases and pushes the fluid outward,
the converse being true for the minima of the radius where
the increase of the Laplace pressure pushes the fluid inward.

Although surface tension exists in solids as well, its
effect on the pattern formation is believed to be unobserv-
able at macroscopic scale because surface energy is negli-
gible compared to elastic energy of deformation. Perhaps
the only phenomenon where surface tension plays a role is
crystal faceting [5] where it does not compete with elastic
forces. The RPI may be, however, relevant in soft solids,
such as those found very often in biology, and so may play
a role in such biological processes as generation of fila-
ments, formation of beaded forms in myelinated nerve
fibers, etc. It also provides a unique method for fabricating
undulating cylinders with a wavelength controlled by
physical parameters. Such cylinders with undulation pe-
riod in the range of optical wavelength could show, for
instance, forbidden wave bands for the propagation of
light.

In solids, contrary to liquids, the energy has a volume
part that changes alongside modulation of the external
surface. As is often noticed, the balance between the two
kinds of energies, capillary and elastic, depends on a
quantity with the dimension of length l ¼ �=�, where �
is surface tension and � is the elastic shear modulus. In

usual solids, this is a very small length scale: because of its
origin in atomic interactions, one expects l to be of the
order of the range of atomic interactions, about a fraction
of a nanometer. Therefore the capillary effect, in the nu-
merator of the small length scale, should be typically
negligible. Nevertheless, in a very soft solid like a gel
just above the percolation threshold, this length scale can
be macroscopic. The reason is that the complex molecular
structure of such materials reduces by many orders of
magnitude the ‘‘typical’’ value of the shear modulus com-
puted from the standard molecular parameters, such as the
size of an atom and the energy of a covalent bond.
Measured values for � are few tens of mN=m and for �
measured values are few tens of Pa (very small by com-
parison with ordinary materials); therefore, l, as well as the
expected typical length scale for elastic RPI, may go up to
the millimeter range, well above any microscopic length
scale of this kind of material.
To demonstrate RPI in a solid, we have used a standard

agar gel (Merck KGaA, Germany) dissolved in purified
water. Small amounts of methylene blue were added to
agar solutions to aid observations. Agar is known to dis-
solve in boiling water and to form a gel upon cooling to
about 35 �C [6,7]. Upon cooling, the shear modulus first
rapidly increases and then stabilizes (Fig. 1). A cooled gel
behaves as an incompressible elastic solid over a wide
frequency range (at least from 300 to 10�3 Hz; Fig. 1).
We have carefully checked rheological properties of agar
gels and measured the shear modulus at various concen-
trations (from 0.5% to 0.16%).
The experiments are carried out as follows. Liquid solu-

tions of agar (90 �C) with various concentrations are first
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injected in cylindrical moulds made of cellular polystyrene.
These moulds are fabricated using two cuboid pieces of
cellular polystyrene (3� 0:5� 0:5 cm3). One of the larger
faces of each piece is heated just above the glass transition
temperature of polystyrene. The two hot sides are then
assembled and a 3 cm long copper wire of a desired
diameter is inserted between them. This wire is removed
after cooling at room temperature, leaving a hollow cylin-
der of the same dimensions within the polystyrene block.
We have checked by optical microscopy that the roughness
of the surface is less than 4 �m. The mould is then pre-
heated in order to prevent partial gelation before the liquid
is completely injected.

After injecting the agar solution and cooling for 5 h at
room temperature, the mould is dissolved in liquid toluene.
Total dissolution takes about 3 min. The strand of agar gel
is then released in toluene. The agar gel—toluene surface
tension � is roughly equal to the water-toluene surface
tension; this value is used in further computations. To
prevent the agar cylinder from wrapping up, the two ends
are fixed in a frame before releasing. This yields strands
measuring about 2 cm long floating in toluene. Depending
on the mould, their radius lies in the range 150–260 �m.

Depending on the initial strand radius �0 and the shear
modulus � of the agar gel, the growth of a surface insta-
bility takes place during the mould dissolution. The final
steady pattern is seen after dissolution is complete. Strands
of agar gel with a high concentration and/or a large radius
retain a cylindrical shape after the mould dissolution [Fig. 2
(a)]. Strands with a low concentration and a small radius are
systematically breaking into two during the dissolution. For
intermediate strands, surface undulations develop just after
dissolution and remain permanently [Figs. 2(b)–2(d)].
When an unstable filament is gently stretched in the middle,
and then released, it recovers its length and shape, thereby
demonstrating that the undulation pattern is stable. On the
contrary, if pure water is injected into the moulds instead of

the agar gel, the released strand breaks, as expected, into
separate spherical droplets.
We used toluene saturated with water to prevent shrink-

ing. This makes a fundamental difference between our
experiments and those reported by Matsuo and Tanaka
[8]. In their case, the instability is driven by diffusion of
the gel solvent into the miscible outer fluid. The slowly
developing instability they observe cannot be linked to a
RPI, because there is no sharp interface and so no surface
tension in their experiment.
Within the setup we used, the resolution for the ampli-

tude of the modulations is about 15 �m. To obtain the
critical elastic modulus (at a fixed radius) below which
cylinders remain straight, the amplitude is plotted as a
function of the elastic modulus and fitted by the power law

fð�Þ ¼ �ð���cÞ� (1)

with adjustable parameters �, �, and �c (Fig. 3); �c is the
shear modulus at the instability threshold. In this way, we
succeed in separating unambiguously the cases where a
cylinder is either stable or not. Figure 4 summarizes the
experimental stability data in the �� �0 plane. The plane
is divided into two areas, one corresponding to stable
straight cylinders and the other to unstable ones.
Just above the threshold [Fig. 2(b)], the instability leads

to a varicose shape. Farther away from the threshold, the
shape becomes more complicated, with large constant-
radius areas interrupted by constrictions [Fig. 2(d)]. In
the following, we focus on the physics near the threshold
[Figs. 2(a) and 2(b)]. The analysis far beyond the insta-
bility threshold requires a nonlinear theory that will be the
subject of future work.
Suppose that the surface of a cylinder is perturbed by a

small axisymmetric modulation from a constant radius �0

to �ðzÞ ¼ �0 þ �ðzÞ, where z is the coordinate along the
axis and �ðzÞ � �0 (Fig. 5). The mean curvature � of the
surface changes from 1=�0 to 1=�0 � �ðzÞ=�2

0 � �00ðzÞ.
This yields a Laplace pressure contribution �� to be added
to the boundary conditions (bc) for the normal stress on the
surface of the cylinder.

FIG. 2. Equilibrium shape of agar gel cylinders for different
values of the shear modulus. Radius is � ¼ 240 �m, surface
tension is � ’ 36:5 mN=m. Shear modulus varies from 12 to
27 Pa. Note the RPI instability for values of �=ð��Þ larger
than 6.2.

FIG. 1. Linear rheological properties of a 0.18% agar gel
hydrogel. The curves are obtained by dynamic oscillatory shear
tests, using a strain controlled rheometer (ARES-RFS from
TAInstruments) in Couette geometry. Left: Evolution of the
storage and loss moduli as functions of time. Right: Storage
and loss moduli as functions of the angular frequency 5 h after
cooling.
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Our material can be considered as incompressible, so
that its only relevant Lamé coefficient is the shear modulus
�. Using a variational formulation, we write the elastic
energy in the cylindrical coordinates r; z as

E ¼ 2�
Z

dz
Z �

0
drr

�
�

�
u2r;r þ u2z;z þ u2r

r2

þ 1

2
ður;z þ uz;rÞ2

�
� p

�
ur;r þ ur

r
þ uz;z

��
;

(2)

where ur; uz are the radial and axial displacements, the
indices preceded by a comma denote respective partial
derivatives, and p is the Lagrange multiplier imposing
the incompressibility condition

ur;r þ ur
r
þ uz;z ¼ 0: (3)

By variation with respect to the displacements ur and uz,
one gets the Cauchy-Poisson equations in cylindrical
coordinates:

�½2uz;zz þ ður;z þ uz;rÞ;r þ r�1ður;z þ uz;rÞ� � p;z ¼ 0;

(4)

�ður;zz � uz;zrÞ � p;r ¼ 0: (5)

The latter equation has been rearranged using the incom-
pressibility condition (3) and the identity

ur;rr þ ur;r
r

� ur
r2

¼
�
ur;r þ ur

r

�
;r
:

The two boundary conditions on the free surface r ¼
�ðzÞ express the continuity of stress (including the Laplace
capillary pressure), supplemented by two conditions of
smoothness at r ¼ 0. The Laplace pressure comes from
the variation of the capillary energy equal to the area of the
perturbed cylinder times surface tension �. Assuming
cylindrical symmetry, this energy reads

A ¼ 2��
Z

�ðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

;z

q
dz:

The variation of the capillary energy caused by changing
the shape of the surface of the cylinder reads

	A ¼ 2�
Z

	�ðzÞ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �2
;z

q
� �;zz�ðzÞ

ð1þ �2
;zÞ3=2

�
dz:

This expression has to be added to the contribution 	Eb to
the variation of E, which comes from the boundary term
after integration by parts:

	Eb ¼ 2�
Z

�ðzÞ½	urð2�ur;r � pÞ
þ�	uzður;z þ uz;rÞ�dz;

where the integrand is evaluated at r ¼ �ðzÞ.
Writing now that 	�ðzÞ ¼ 	ur at r ¼ �ðzÞ, and requir-

ing (	Eb þ 	A) to vanish for any possible 	ur and 	uz,
one finds the following bc for the tangential and normal
stress on the surface:

ur;z þ uz;r ¼ 0; (6)

� �

�
ur
�2
0

þ ur;zz

�
þ 2�ur;r � p ¼ 0: (7)

FIG. 3. The modulation amplitude as a function of the shear
modulus for a fixed radius of the strands (� ¼ 240 �m). The
solid line is the best fit according to Eq. (1) with �c ¼ 25:6 Pa,
� ¼ 34:1 �m, and � ¼ 0:71.

FIG. 4. A series of agar cylinders with different shear modulus
has been investigated for each radius. The empty symbols
correspond to stable cylinders and filled symbols to unstable
cylinders acquiring a varicose shape. The parametric plane �0 �
� is separated into two domains by the theoretical curve
�=ð��0Þ ¼ 6 (without fitting parameters) derived in this Letter.

FIG. 5 (color online). Sketch of a straight cylinder before and
after a varicose perturbation. The energy increment may be of
either sign, depending on the radius, the surface tension, and the
shear modulus.
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In the last condition, the uniform equilibrium pressure
inside the unperturbed straight cylinder given by the stan-
dard Laplace value, �=�0, has been subtracted from p. The
problem of linear stability amounts to finding a nontrivial
solution of Eqs. (4), (5), and (3) with the bc (6) and (7),
imposed at r ¼ �0.

In a standard way, we assume a harmonic z dependence
of any physical quantity of the order of the perturbation
�eikz with a wave number k. Then one can express from
Eq. (4) pðr; kÞ as a function of v ¼ ur and its derivatives,
and use the result in (5) to get a fourth-order equation for v:

ðL� k2Þ2v ¼ 0; L ¼ d2

dr2
þ 1

r

d

dr
� 1

r2
: (8)

Omitting terms diverging at r ¼ 0, the general solution of
Eq. (8) is found by using theWronskian method and can be
presented as

vðrÞ ¼ �I1ðkrÞ þ �k2
�
K1ðkrÞ

Z �

r
I21ðkr0Þr0dr0 � I1ðkrÞ

�
Z �

r
r0I1ðkr0ÞK1ðkr0Þdr0

�
; (9)

where Ia and Ka are the modified Bessel function of
first and second kind of order a, respectively, and � and
� are integration constants. Using Eqs. (3)–(5), the bc (6)
and (7) at r ¼ � can be expressed in terms of v and its
derivatives.

These bc involve the third derivative of v at most,
consistent with the fact that Eq. (8) is of the fourth order.
Functions singular at r ¼ 0 have been excluded by the
particular choice of solution in Eq. (9). Using the general
solution given by Eq. (9) in the bc (6) evaluated at r ¼ �0

and taking note that the integrals in (9) vanish at this
point yields � ¼ 2�. Upon this substitution, we find
from the bc (7) that the nontrivial solution exists at the
critical value

�c ¼ 2��0

1� �2
0k

2

�
2k�0I0ðk�0Þ

I1ðk�0Þ � 1

�
: (10)

Instability occurs at � > �c. It first appears in the long-
scale mode k ! 0 at �cð0Þ ¼ 6��0. The instability limit
diverges at k ! 1=�0.

The curve representing the equation � ¼ 6��0 is plot-
ted in the �� �0 plane in Fig. 4. The toluene-agar gel
surface tension is taken as the measured value � ¼
36:5 mN=m. This curve, directly following from the theory
with no adjustable parameters, well matches the boundary
between the two domains (for stable or unstable cylinders)
detected experimentally. The finite wavelength observed in
experiments may be either an indication of a slight sub-
criticality of the instability or a manifestation of nonlinear
effects, necessarily present when the instability is observed
at the macroscopic scale.

This above exact result for �c has been viewed as an
approximation by Barrière et al. [9] who have used this

approach to explain pattern formations during shrinkage of
polymer gels reported by Matsuo and Tanaka [8]. In these
experiments, the swollen gel in the cylinder becomes sur-
rounded by a shrunken skin of macroscopic thickness.
Assuming that the skin acts as an effective surface tension,
Barrière et al. have found that the orders of magnitude
might be in the right range to explain surface instability
observed by Tanaka and Matsuo [9]. In these experiments
the instability was, however, driven by a skin action
modeled by a surface tension rather than by capillarity.
Inferring surface tension out of a macroscopic concentra-
tion gradient may be problematic: according to the
Kirkwood-Buff formula [10], surface tension requires an
anisotropic stress tensor in the transition region. Such an
anisotropy certainly exists near the interface between the
water of our gel and toluene because of their immiscibility,
but does not a priori exist for two miscible phases, like
those of Tanaka and Matsuo. The main distinctive features
of our experiments are (i) far smaller elastic moduli of agar
gels and (ii) absence of a macroscopic skin at the agar gel
surface. The last point is particularly important, and the
good agreement between theory and our experiments for
the onset value is a strong argument in favor of capillary
effects as the cause of the observed instability.
In conclusion, we have given experimental evidence of

Rayleigh-Plateau instability in a cylinder of soft solids. Its
onset is well described by theory. Contrary to the RPI in
liquids, the instability evolves to a steady wavy pattern
along the cylinder. From the experiments we conjecture
that, beyond a second critical (nonlinear) threshold, the
final state is a set of disconnected droplets of solid, like in
the case of a fluid cylinder.
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Liquides Soumis aux Seules Forces Moléculaires
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