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The dominant hurdle to the operation of optomechanical systems in the quantum regime is the coupling

of the vibrating element to a thermal reservoir via mechanical supports. Here we propose a scheme that

uses an optical spring to replace the mechanical support. We show that the resolved-sideband regime of

cooling can be reached in a configuration using a high-reflectivity disk mirror held by an optical tweezer

as one of the end mirrors of a Fabry-Perot cavity. We find a final phonon occupation number of the trapped

mirror �n ¼ 0:56 for reasonable parameters, the limit being set by our approximations, and not any

fundamental physics. This demonstrates the promise of dielectric disks attached to optical springs for the

observation of quantum effects in macroscopic objects.
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Operating macroscopic objects in the quantum regime is
a challenge whose successful completion will have pro-
found implications, ranging from an improved fundamen-
tal understanding of the quantum-classical interface and of
the quantum measurement process to the development of
quantum detectors of unsurpassed sensitivity [1]. Cooling a
nanomechanical system to its ground state of center-of-
mass motion is an important step toward that goal, and
spectacular progress has recently occurred via an interdis-
ciplinary approach combining tools from nanoscience,
quantum optics, and condensed matter physics. A recent
benchmark experiment has demonstrated the operation of
a micromechanical resonator down to a phonon number
�n < 0:07, as well as quantum control at the single-phonon
level [2]. Such developments pave the way to the detection
of exceedingly small forces and displacements, with appli-
cations ranging from the quantum control of molecular
processes to gravitational wave detection [1].

One of the simplest systems being considered in this
quest consists of a small vibrating element that forms one
of the end mirrors of a Fabry-Perot cavity [3]. So far the
biggest hurdle in achieving the ground-state cooling of
such a mirror has been the coupling to a thermal reservoir
by way of a mechanical support. This support acts as the
dominant source of dissipation and decoherence. This note
theoretically discusses an alternative configuration where
the mechanical clamping of the system is replaced by an
optical spring realized by an optical tweezer.

There is a large volume of work on the trapping of
dielectric particles—from atoms to bacteria, in the focus
of laser beams far detuned from any electronic resonance
[4]. Over the last two decades optical tweezers have ma-
tured into a well established tool, providing elegant and
relatively simple ways to control the motion and to measure
the weak forces acting on particles suspended in a fluid or in
vacuum. Exploiting this idea, several recent theoretical
proposals have considered levitating macroscopic objects
(spheres or even living organisms) in a cavity and cooling

them to their ground state of center-of-mass motion [5–7].
A key observation in the present context is that macroscopic
objects optically levitated in vacuum are remarkably iso-
lated from most environmental noise sources [8]. This leads
us to introduce the new paradigm of an optical spring
mirror, in which an optomechanical cavity mirror is sus-
pended by light rather than by mechanical clamps. This
approach provides an elegant route toward the elimination
of the mirror clamping losses already mentioned, and has
the potential to relatively easily reach the quantum regime.
One can also envision simple schemes to couple it to a two-
state atom to fully characterize and control the quantum
state of the mechanical motion [9]. We also remark that
trapping and cooling a dielectric end mirror of a resonator,
rather than an object inside a resonator, results in scattering
losses significantly reduced compared to the case of spheres.
The optical spring mirror that we propose is a dual-disk

structure comprised of a silica disc that is connected via a
silica pillar or pedestal to a disk mirror, the geometry of
which is illustrated in the inset in Fig. 1. The idea is that the
structure is held in vacuum by the optical gradient force
due to two linearly polarized elliptical Gaussian beams of
equal wavelength � that are applied solely to the silica disk
to avoid laser heating of the disk mirror. The disk mirror is
a Bragg mirror composed of alternating layers of two

FIG. 1 (color online). Arrangement for an optomechanical
cavity without clamping losses. The disk mirror is trapped in
the optical tweezer by the crossed elliptical Gaussian beams
shown in red, and provides the moving mirror for the Fabry-
Perot aligned along the z axis shown in green.
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dielectrics that acts as an end mirror for the cavity. The
silica disk axis is along the z axis of the Fabry-Perot
interferometer, and perpendicular to the trap beams, see
Fig. 1. The tweezer beam traveling in the x direction is
polarized along the y direction, and the beam traveling in
the y direction is polarized in the x direction; the orthogo-
nal polarizations being chosen to avoid the onset of inter-
ferences in the overlap region of the beams. Both beams
have an elliptical transverse profile with the smallest beam
waist along z, so as to provide a tight confinement along
that axis and to avoid overlap with the disk mirror. The
total intensity of the trapping beams has the form

IðrÞ ¼ I0x

exp½ �2y2

w2
0y
ð1þx2=y2r Þ þ �2z2

w2
0z
ð1þx2=z2r Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ x2=y2rÞð1þ x2=z2rÞ

p

þ I0y

exp½ �2x2

w2
0x
ð1þy2=x2r Þ þ �2z2

w2
0z
ð1þy2=z2r Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ y2=x2rÞð1þ y2=z2rÞ

p ; (1)

where I0x and I0y are the on-axis intensities of the laser

beams traveling in the x and y directions,w0� is the focussed

beam waists with � ¼ x, y, z, and �r ¼ �w2
0�=� the

Rayleigh ranges along the respective directions.
For concreteness we consider the case of a Nd:YAG

trapping laser (� ¼ 1:064 �m) that is far-detuned from
any material resonance in the silica disk. In this far-detuned
limit we may assume that the field induces a dipole moment
p ¼ �E in the material, where � is the polarizability tensor
and E the electric field envelope. Further assuming that the
field envelope varies little over the dimensions of the disk,
the components of the polarizability tensor can be approxi-
mated by those induced by a uniform electric field, and the
trapping potential can be approximated by that of a static
field, with a factor of 2 reduction due to time averaging. The
static polarizability of a dielectric cylinder in a uniform static
field has previously been calculated numerically [10].
Instead, we use the analytical expression for the polarizabil-
ity of a spheroid [11], which is close to that of a cylinder of
the same permittivity � and aspect ratio. For our parameters,
that approximation results in an error of about 3% in the
value of the components of the polarizability tensor. The
transverse and longitudinal polarizabilities of a spheroid of

diameter d, height h, length l, eccentricity e ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðd=hÞ2 � 1
p

and volume V are then given by

�?;z ¼ �0V

�
�r � 1

1þ N?;zð�r � 1Þ
�
; (2)

where �r ¼ �=�0 is its relative permittivity, Nz ¼
ð1þ e2Þðe� arctaneÞ=e3, and N? ¼ 0:5ð1� NzÞ.

We next estimate the optical trap frequencies for our
optical spring mirror. For a silica disk of dimensions d ¼
60 �m, h ¼ 2:5 �m, and a net mass m ¼ 3:87�
10�11 kg for the dual-disk structure (the mirror diameter
and height being 50 �m and 3:04 �m respectively), this
gives �? ¼ 1:66� 10�25 C m2 V�1 and �z ¼ 4:88�
10�26 Cm2 V�1. The optical potential due to the gradient

force is then VðrÞ ¼ ��?IðrÞ=ð2�0cÞ, r being small dis-
placements about the origin. For small deviations along the
z axis this yields a harmonic potential of frequency

!z ¼
�

2�?
mc�0w

2
0z

ðI0x þ I0yÞ
�
1=2

: (3)

For Nd:YAG laser beams of intensity 0:1 W=�m2 and
beam waists w0x ¼ w0y ¼ 100 �m and w0z ¼ 4 �m, we

then find !z ¼ 2:01� 105 rad=s, and in a similar manner
we find !x;y ¼ 8:29� 103 rad=s for the transverse trap-

ping frequencies.
Next we assess the angular motion of the disk with

respect to the x and y axes, see Fig. 1. In particular, we
calculate the wobble frequency !wob of the disk when it is
misaligned by an angle � with respect to the x-axis. Such
motion of asymmetric isotropic objects in linearly polarized
optical traps has previously been studied in detail, for ex-
ample, in Ref. [12]. We estimate!wob by considering a light
beam propagating in the y direction and polarized along x.
For a disk misaligned by an angle �with respect to the x axis
the induced dipole moment is p ¼ ½�?E0ðcos�Þx̂þ
�zE0ðsin�Þẑ]. An analysis of small angle harmonic rota-
tional motion along y shows that it has the frequency

!wob ¼
�
12I0yð�? � �zÞ

�0cIx

�
1=2

; (4)

where Ix ¼ mð3d2=4þ h2Þ is the moment of inertia of
the disk along x. For our parameters we find !wob ¼ 2:3�
104 rad=s. We note that !z � !wob thereby ruling out any
parametric coupling between the wobble mode and the
longitudinal mirror motion. This means that the wobble
mode should not be detrimental to cooling the longitudinal
mirror motion.
Although the silica disk is nominally transparent to the

trapping lasers, it will absorb some light, and with no heat
sinking the only way to dissipate this energy is through
blackbody radiation [5]. Taking the absorption coefficient
� ¼ 10�5=m due to UV absorption, we find that the tem-
perature of the mirror increases by a modest 0.4 K, thereby
causing no material damage [13].
Having established the mechanical properties of the

trapped Bragg disk, we now turn to a discussion of the
Fabry-Perot cavity in which the Bragg disk serves as a
vibrating end mirror [1]. The fixed mirror of the Fabry-
Perot interferometer, assumed to have a reflectivity Rf ¼
0:999 998, is placed at a distance L ¼ 3:999 cm from the
movable mirror of lower reflectivity Rm ¼ 0:9998. We
note that small mirrors of comparable or smaller sizes
with reflectivity exceeding 0.9998 are already being used
in experiments [14,15]. For � ¼ 852 nm, the cavity damp-
ing rate is � ¼ �c=FL � 7:5� 105 rad=s (F is the fi-
nesse), a value comparable to the optical trap frequency, so
that the system is only marginally approaching the resolved
sideband limit of radiation pressure cooling. Ignoring all
sources of noise, these parameters result in a minimum
thermal phonon occupation number of [16]
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hnimin ¼ � 4ð�þ!zÞ2 þ �2

16!z�
: (5)

For our parameters and a detuning � ¼ ð!laser �!cÞ ¼
�4:25� 105 rad=s from the cavity resonance (!c), we get
hnimin ’ 0:56, well into the quantum regime. We remark
that we may reduce this value by using tighter trapping,
though this would violate our approximation that the field
varies little over the dimensions of the disk. The quoted
value is thus an upper-bound consistent with our approx-
imations, but by no means a fundamental limit.

In calculating hnimin we have ignored all effects of noise.
The major sources of noise are the fluctuations of the
trapping and the Fabry-Perot cavity lasers, and background
gas collisions. We next evaluate their impact on hnimin.

Trapping laser fluctuations.—There are three noise
sources due to the optical tweezer laser beams: intensity
fluctuations, beam-pointing fluctuations, and photon scat-
tering losses. The first two noise sources have been studied
extensively in the context of trapping alkali atoms in
optical traps [17]. The intensity fluctuations lead to a
change in trap frequency, see Eq. (3), resulting in transi-
tions n ! n� 2 between states of vibration of the trapped
mirror. This produces a rate of parametric heating due to
intensity fluctuations given by�I ¼ 1

4!
2
zSIð2!zÞ, where

SIð2!zÞ is the noise power spectrum of the laser. For
example, using SI ¼ 10�10 Hz�1 results in an exponential
energy growth rate of 1:01 rad=s. We note that Nd:YAG
lasers with a lower noise spectrum are available and would
further reduce this source of heating.

Beam-pointing fluctuations cause fluctuations of the trap
center and lead to a constant heating rate given by �x ¼
1
4!

4
zmSxð!zÞ. For a spectrum of position fluctuations

Sxð!zÞ of 10�10 �m2 Hz�1 this yields a negligible con-
stant heating rate of the order of 10�12 J=s.

We next turn to scattering losses. An object with a diame-
ter much bigger than the wavelength of light, such as our
‘‘floating’’ mirror, can be thought of as being comprised of a
collection of optically driven induced dipoles. Scattering
from these dipoles is the mechanism behind Rayleigh scat-
tering [18]. The momentum kicks due to the scattering
average to zero, but their fluctuations in the z direction result
in heating. Details of this scattering loss can be found, e.g., in
Ref. [18]. Here we summarize the main results.

For a light intensity I0 incident on a scatterer of volume
V, the scattered power per solid angle is given by dP

d� ¼
I0VR, where the scattering coefficient can be obtained

by thermodynamic arguments and is given by R ¼
!4

16�2c4
�eCTkBTsin

2	. Here,! is the frequency of the (trap-

ping) laser, �e ¼ ðn2 � 1Þðn2 þ 2Þ=3 where n is the index
of refraction, CT is the isothermal compressibility, Te is the
effective temperature of the density fluctuations and 	 the
angle from the direction of propagation (say the x axis). All
other constants have their usual meaning. The power is the
rate of optical energy scattered, Escatt, and hEscatti ¼
hNscatti@!, where Nscatt is the number of photons scattered.

The component of the trapping photon momentum along
z is pz ¼ @k cos	, resulting in an increase hEkini in kinetic
energy of the trapped mirror. The fraction of scattered
optical energy per photon that contributes to that increase

is 
 ¼ 1
@!

ð@k cos	Þ2
2m . Integrating over the solid angle d�, we

find the scattered power to be

d

dt
hEkini ¼ 8@�4I0V�eCTkBTe

15mc�5
: (6)

For our parameter we find 
 ¼ 2:68� 10�26cos2	—
which confirms the intuitive argument that most of the
scattered light does not contribute to the heating of the
center-of-mass mode—which leads to a negligible constant
heating rate of 1:93� 10�32 J=s. This is in contrast to the
situation with nanospheres, where dipole scattering is the
dominant source of noise [5,6].
Fabry-Perot laser fluctuations.—Another source of

noise that places a fundamental limit on the occupation
number of the center-of-mass motion of the moving mirror
is the linewidth of the Fabry-Perot laser [19]. Here we
model the laser linewidth in terms of a phase diffusion

process that drives the laser field Eine
i	ðtÞ. The phase 	ðtÞ

is given by 	ðtÞ ¼ ffiffiffiffiffiffiffiffiffi
2�L

p R
t
0 
ðsÞds, where �L is the laser

linewidth and 
ðsÞ is a gaussian white noise process with
mean h
ðsÞi ¼ 0 and correlation h
ðsÞ
ðvÞi ¼ �ðs� vÞ.
For jð!czÞ=ð!zLÞj � 1 this results in the linewidth-
modified cooling rate

�rp ¼ �
�

!c�

m!zL
2

�
8Pin½A� � Aþ�

½ð2�L þ �Þ2 þ 4�2�ð�2 þ!2
zÞ

(7)

where Pin is the input power and A� is given by

A� ¼ ð�L þ�Þð2�L þ�Þ2 þ 2�Lðð��!zÞ2 þ�2Þþ�!2
z

ð2�L þ�Þ2 þ 4ð��!zÞ2
:

(8)

The laser linewidth generally results in less efficient
backaction cooling, but there is a range of detunings �
for which the cooling rate is essentially unchanged from
the ideal case, a result of the excitation of the anti-Stokes
sideband from higher frequencies in the laser spectrum.
For our parameters, a 1 �W laser of linewidth 10�
103 rad=s, detuned -4:25� 105 rad=s from the cavity reso-
nance results in a cooling rate �rp of 5:2� 104 rad=s.

Background gas collisions.—The fluctuations in mirror
motion due to background gas collisions can be described
by the Langevin equation €zþ �bg _z ¼ �ðtÞ where the fluc-
tuating force �ðtÞ obeys the Markovian correlation rela-
tions h�ðtÞi ¼ 0, h�ðtÞ�ðt0Þi ¼ q�ðt� t0Þ with q given by
the fluctuation-dissipation theorem as q ¼ 2kBT�bg=m. To

derive an expression for �bg we consider motion along

the z axis only. A gas molecule of mass mg and velocity vg

undergoing an elastic collision with the disk imparts a mo-
mentum change �p ¼ 2mgvg. In the moving frame of the

disk, this gives �pdisk ¼ 2mgðvg � vdiskÞ � 2mgðvg þ
vdiskÞ, the two contributions corresponding to forward and
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backward collisions. The rate of momentum transfer is then
obtained by multiplying this expression by the number of
collisions per unit time (nAvg=2), where n is the number

density of gas molecules, A is the cross-section area of the
disk, andvg is themean speed of themolecules, taken tobe to

be the average thermal velocity for an ideal gas of pressureP.
This gives �bg ¼ 4PA=ðmvgÞ. For a pressure of 10�8 torr,

�bg ¼ 2:55� 10�6 rad=s.We note also that background gas

collisions do not introduce any significant wobble.
Both intensity fluctuations and background collisions

are mechanisms of damping for the disk mirror and provide
the equivalent of a mechanical Q factor. The coupling to
a thermal reservoir increases the attainable mean phonon
number hnimin by �bgnR=ð�rp � �IÞ, nR being the

average occupation number of the relevant mode before
cooling, nR ’ kBT=@!z. For our parameters, at room tem-
perature, the contribution of this mechanical damping is
very small, ’ 0:01, and can be reduced further via better
stabilized lasers and an improved vacuum.

In conclusion, we have shown that the coupling to the
thermal reservoir in standard optomechanical setups can be
completely eliminated by optical levitation of the Fabry-
Perot mirror, resulting in mean phonon occupation numbers
significantly below unity. Following the argument of Ref. [6]
it can also be shown that for the parameters considered here a
levitated mirror cooled to its quantum mechanical ground
state would undergo of the order of 104 oscillations before
undergoing a shot-noise induced quantum jump.

As noted earlier the quoted value of hnmini can be
reduced by stiffening the optical spring. The optical spring
effect has been studied extensively in the gravitational
wave detection community [20], where the moving mir-
ror’s mechanical resonance frequency has been greatly
enhanced using a two-color laser configuration. A similar
approach could also increase !z in our case without in-
crease in the intensity of the trapping lasers.

An alternative cooling technique is cold damping quan-
tum feedback. Using the theory of Ref. [21] we can evaluate
theminimummean phonon occupation number ignoring all
sources of noise. For the parameters used in the sideband
cooling calculation above, with a feedback bandwidth of
!fb ¼ 3!m, cold damping results in hnimin ’ 230, far from
the quantum limit. However, in contrast to sideband cool-
ing, cold damping is more effective for larger �=!m, and is
more sensitive to the initial phonon occupation number.
For instance, for an initial temperature of 100 mK with
� ¼ 10!m, then hnimin ’ 0:86. We can therefore see that
for our setup, sideband cooling is advantageous.

Future work will include the extension of this proposal
to a three-mirror geometry, as well as the coupling of the
levitated mirror to ultracold atomic and molecular systems,
either for the quantum control of the state of the mirror, or
conversely for the manipulation of the atoms. In particular,
the generation, detection and control of nonclassical mo-

tional states of the mirror will be considered. In addition,
we will carry out a more detailed analysis of the optical
coupling of the optical tweezers to the dual-disk structure.
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