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The ground-state energy of a system of fermions can be calculated by minimizing a linear functional of

the two-particle reduced density matrix (2-RDM) if an accurate set of N-representability conditions is

applied. In this Letter we introduce a class of linear N-representability conditions based on exact

calculations on a reduced active space. Unlike wave-function-based approaches, the 2-RDM methodology

allows us to combine information from calculations on different active spaces. By adding active-space

constraints, we can iteratively improve our estimate for the ground-state energy. Applying our method-

ology to a 1D Hubbard model yields a significant improvement over traditional 2-positivity constraints

with the same computational scaling.
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The first-principles prediction of the electronic structure
of atoms, molecules, and solids has been a major focus of
theoretical chemistry since the advent of quantum mechan-
ics in the early 1900s. The difficulty of electronic structure
calculation is a consequence of the exponential growth of
the fermionic Hilbert space with particle number [1]. For a
system withN electrons in L spin orbitals, the ground-state
N-particle wave function will be some linear combina-
tion of ðLNÞ ¼ L!=N!ðL� NÞ! possible electronic

configurations.
A non-wave-function-based approach to electronic

structure calculations was proposed in the 1950s by
Löwdin, Coleman, and others [2–5]. This approach treats
the two-particle reduced density matrix (2-RDM) rather
than the N-particle wave function as the fundamental
object of interest [5–9]. A Hamiltonian of N fermions
with at most two-body interactions can be written in
second-quantized form as

Ĥ ¼ X

ik

1Hi
kc

y
i ck þ

X

ijkl

2Hij
klc

y
i c

y
j clck; (1)

where cyi and ci are, respectively, the creation and annihi-
lation operators for a fermion in state i. The tensors 1H and
2H are the one- and two-particle integrals. If we evaluate
the two-particle reduced density matrix corresponding to
the state j�i,

2Dij
kl ¼ h�jcyi cyj clckj�i; (2)

then we can write the energy as a linear functional of only
the 2-RDM [2,10,11]

E� ¼ h�jĤj�i (3)

¼ X

ijkl

2Kij
kl
2Dij

kl (4)

¼ Tr½2K 2D�; (5)

where we have defined the two-particle reduced
Hamiltonian

2Kij
kl ¼

1

N � 1
1Hi

k�
j
l þ 2Hij

kl: (6)

Because not all 2-RDMs are derived from physical,
fermionic N-particle systems, minimization over the space
of 2-RDMs in Eq. (5) to find the ground-state energy must
be constrained to include only physical 2-RDMs. The
problem of determining which 2-RDMs are derived from
fermionic N-particle systems is known as the
N-representability problem [4]. We will denote the set of
N-representable 2-RDMs as 2DN so that the true ground-
state energy can be obtained by performing a constrained
minimization over this set:

Eg ¼ min
2D22DN

Tr½2K 2D�: (7)

Although no simple, complete set of N-representability
constraints is known to exist, many sets of partial con-
straints provide approximate N representability. The most
well known of these are the D, G, and Q constraints,
known collectively as the 2-positivity constraints, devel-
oped by Coleman, Garrod, and Percus [4,12]. Just as 2D is
the two-particle RDM, there exists a two-hole RDM 2Q
and a particle-hole RDM 2Gwhich are linearly interrelated
[9] according to the equations

2Gij
kl ¼ 2Dil

jk þ 1Di
k�

j
l ; (8)

2Qij
kl ¼ 2Dij

kl � 1Di
k�

j
l � �i

k
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j
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The 2-positivity constraints require that all three of the
matrices 2D, 2G, and 2Q be positive semidefinite, having
no negative eigenvalues.
Recently, it has been shown that the imposition of these

2-positivity constraints allows the calculation of atomic
and molecular ground-state energies to a high degree of
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accuracy [6,8,9,13]. To improve such calculations even
further, additional constraints must be added. Again, one
obvious approach is to construct three- and four-particle
analogues of the two-particle positivity constraints
[6,7,9,14,15]. However, implementing these higher-order
positivity constraints is extremely costly; the operational
complexity of the 3-positivity constraints scales at mini-
mum as L9, where L is the number of one-electron basis
functions used in the calculation [16,17]. Consequently, it
is highly desirable to develop new N-representability con-
straints which can be used to improve the accuracy of
existing RDM calculations without adding substantial
computational overhead.

In this Letter, we introduce linear inequality constraints
based on the expectation value of two-body operators. Our
constraints take the form

Tr ½A 2D� � amax; (10)

where A is a Hermitian matrix of the same dimension as 2D
and where amax is the maximum value of Tr½A 2D� that can
be achieved for an N-representable RDM 2D. In other
words,

amax � max
2D22D

N

Tr½A 2D� (11)

¼ max
�

h�jÂj�i; (12)

where

Â ¼ XL

ijkl

Aij
klc

y
i c

y
j clck; (13)

such that the elements Aij
kl constitute a Hermitian matrix.

Therefore, in order to obtain amax in Eq. (11) we simply

need to find the maximum eigenvalue of the operator Â.

For a general two-body operator Â, this task is as difficult
as the original many-body problem. However, the central

observation of this Letter is that if the operator Â in Eq. (12)
acts only on some small active space S of LS < L one-
particle states [i.e., if the sum in Eq. (13) runs up to LS

instead ofL], then the problem of calculating amax becomes
tractable. To further simplify the calculation of amax, we

will assume that Â is also a spinless and charge-conserving

operator. In this case, Â commutes with the electron number
operator nS on the subspace S and all spin operators on the
subspace S. This assumption results in a block-diagonal

matrix representation for Â in the eigenstate basis of the
nS and Sz operators. Thus, we can calculate the maximum

eigenvalue of Â far more efficiently (i.e., by diagonalizing a

block-diagonal 2LS-dimensional matrix) than we could if Â
were a general operator, which would require the diagonal-
ization of a ðLNÞ-dimensional matrix.

Next, we must consider how to select the operator Â to
produce the most useful constraints for our ground-state

calculations. There are an infinite number of operators Â

which act on only LS orbitals. Then which operators Â

should we select as constraints? Similarly, which subspace
S will give us the constraints which are most effective in
implementing partial N-representability for a given prob-
lem? We have chosen to take an iterative approach to
constraint generation similar to that taken in [18].
First, the ground-state energy in Eq. (7) is minimized

with respect to 2D subject to the standard closed-shell
constraints defined in [9] and the 2-positivity constraints.
Next, we search for the matrix Aðc;xÞwhich minimizes the
objective function Jðc;xÞ¼ ðamax�Tr½Aðc;xÞ2D�Þ=amax,
the relative difference between the exact upper bound
and the expectation value calculated from our approximate
2-RDM, 2D. To reduce the size of the search space, we
parametrize Aðc;xÞ as

Aðc;xÞ ¼ PSðxÞðc21K þ c22D�� þ c23D��ÞPSðxÞ; (14)

where D�� and D�� are the spin-symmetrized diagonal

blocks of the 2-RDM as defined in [9],

½D���ijkl ¼ h�jcyi�cyj�cl�ck�j�i; (15)

½D���ijkl ¼ h�jcyi�cyj�cl�ck�j�i: (16)

The operator PSðxÞ projects the matrix A onto some set of
LS one-particle orbitals and can be written in terms of an
orthogonal rotation of the canonical orbitals [i.e., U ¼
expðxÞ]. Given the definition in Eq. (14), we can search
the parameter space of c and x to find minima of the
objective function Jðc;xÞ. The many local minima of this
objective function can be identified using any large-scale
nonlinear optimization scheme; we made use of a
Monte Carlo sampling scheme to optimize c along with a
gradient descent method to find an optimal rotation x. For
all ðc;xÞ such that Jðc;xÞ< 0, Aðc;xÞ defines a new con-
straint Tr½Aðc;xÞ � 2D� � amax which is violated by our
current 2-RDM. This type of constraint is similar to that
employed by Verstichel et al. in their study of molecular
dissociation via RDM theory [19]. The major difference is
that in their examples Verstichel and co-workers assume
that the active-space and constraint operator are known in
advance, whereas a crucial aspect of our work is the
optimization of both the active-space and the constraint
operator. Consequently, our methodology can be used to
treat dissociation but can also be applied far more
generally.
Having obtained one (or several) linear constraints

which are violated by the approximate ground-state
2-RDM, we add these constraints to our constraint set
and rerun the ground-state energy minimization algorithm.
Constraints of the form in Eq. (10) are very easy to imple-
ment, since they are linear inequality conditions on the
2-RDM. Thus, they require considerably fewer resources
than positivity constraints, which require the storage and
manipulation of large matrices [13]. At each stage of
the optimization procedure, constraints which are no
longer active can be removed or ‘‘pruned’’ to improve
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performance [18]. The constrained minimization of the
ground-state energy and the addition of new constraints
are repeated until some degree of convergence with respect
to the ground-state energy is reached or until no new
violated constraints (i.e., those with J < 0) can be found.

Our active-space constraints are similar in spirit to the
complete active-space self-consistent field (CASSCF)
method except for the crucial difference that the 2-RDM
methodology allows us to simultaneously impose multiple
constraints generated from different active spaces. Thus,
we can effectively combine information which would be
obtained from different CASSCF calculations, an approach
that would not be possible apart from RDM methodology.
The current approach should also be contrasted with other
active-space RDM approaches which implement approx-
imations to the 2-positivity constraints, but which are
unrelated to the active-space constraints derived in this
Letter [20,21].

To test the utility of these constraints, we performed
calculations on the half filled, 1D Hubbard model which
had previously been studied using RDM techniques in
conjunction with the 2-positivity constraints [22]. The 1D
Hubbard Hamiltonian is given by

H ¼ �t
XL

i¼1

ðcyi ciþ1 þ cyiþ1ciÞ þU
XL

i¼1

cyi�ci�c
y
i�ci�; (17)

where L is the number of lattice sites and period boundary
conditions are assumed. The constrained minimization of
the ground-state energy was performed using the quasi-
Newton L-BFGS algorithm following the matrix-factor-
ization method for large-scale semidefinite programming
discussed in [13,23,24]. Optimization proceeded until all
constraints were satisfied to within a tolerance of 10�5. The
active-space size was chosen to be LS ¼ 8 (four spatial
orbitals and two spin states) so that the maximum block

size in the matrix representation of Â was 36� 36. Table I
shows the results of the application of our constraints to the
half filled, six-site Hubbard model for several values of the
on-site repulsion term U, along with the number of active-
space constraints nA imposed at the final iteration. We ran
our iterative procedure, adding five active-space

constraints at each iteration and pruning inactive con-
straints, until no additional violated constraints could be
found or until the energy converged to within 0:1 mH
(assuming atomic units). For small values of U < 8, we
were unable to find constraints of the form specified
in Eq. (14) which were violated by the approximate
2-RDM (although numerical results indicate that more

complicated parametrizations of Â did yield some violated
constraints). However, for high values of U, Table I shows
that new constraints were found which provided significant
improvements to the approximate ground-state energy. For
instance, at U ¼ 20 the 2-positivity constraints recover
�103% of the correlation energy, but still give an excess
correlation energy of 190 mH with respect to the exact
ground-state energy [22]. Implementing the active-space
constraints in addition to the 2-positivity constraints re-
moves over half of this excess using only 17 extra linear
constraints. Figure 1 shows the convergence of the algo-
rithm with respect to the number of iterations, as con-
straints are added for LS ¼ 6 and LS ¼ 8. The algorithm
successively adds constraints and prunes inactive con-
straints, slowly converging to some active-space limit
given the size of the active space. In general, the larger
the active space LS, the more accurate the constraints
will be.
With regard to the algorithm outlined above, several

points merit attention. First, it must be stressed that the
parametrization of the matrix A suggested in Eq. (14) is
entirely arbitrary; there is no guarantee that the optimal
choice of A can be parametrized as stated in Eq. (14). It
would be extremely valuable to know in advance which
matrices A and which subspaces S are likely to give the
best improvement to ground-state energies. A second,
related issue is the optimization procedure to select useful
constraints. There is no guarantee that constraints which
minimize the objective function Jðc;xÞ will necessarily
provide the most dramatic corrections to the ground-state
energy. A more thoughtful procedure would not merely
maximize the degree of violation of a given constraint, but
would maximize the impact of such a constraint on the
ground-state energy Tr½2K 2D�. Third, we have already
alluded to the fact that the active-space constraints, being

TABLE I. Exact energy and deviations for the L ¼ 6 site Hubbard model with periodic
boundary conditions and t ¼ 1. EFCI is the exact, full configuration interaction (FCI) ground-
state energy. �EDGQ and �EA are, respectively, the energy differences between the exact energy

and the approximate ground-state energies obtained by imposing the 2-positivity constraints and
2-positivity plus active-space constraints with LS ¼ 8. nA gives the number of constraints
imposed at the final iteration to obtain the approximate ground-state energy.

U EFCI �EDGQ �EA �EDGQ ��EA Excess recovered nA

8 �2:048 �0:300 �0:289 0.011 3.7% 11

20 �0:853 �0:187 �0:087 0.100 53.5% 17

40 �0:429 �0:102 �0:039 0.063 61.8% 16

80 �0:215 �0:053 �0:025 0.028 52.8% 13
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linear, can be implemented far more efficiently than the
2-positivity constraints. Consequently, it would be quite
interesting to examine whether we could abandon the
2-positivity constraints altogether for certain problems
and simply perform 2-RDM calculations using only
active-space constraints. Fourth, we have assumed that

the operator Â does not act on spin; this restriction could
be dropped. All of these suggested modifications could
potentially improve both the accuracy and efficiency of
the active-space constraints suggested herein. Nonetheless,
even as they are currently implemented, active-space con-
straints appear to be a valuable new tool in variational
2-RDM calculations.

Finally, it must be stressed that the idea suggested in this

Letter is quite general. The key observation is that if Â acts
only on some reduced active space, then amax can be
calculated efficiently. However, there are many other situ-
ations in which an exact amax can be calculated efficiently.

For instance, if Â is a single-particle operator, if it com-
mutes with some symmetry operation like translation or
rotation, or if it is a pairing Hamiltonian, then amax can be
calculated much more efficiently than for a general opera-

tor Â. In fact, in the specific case of a pairing Hamiltonian,
Van Neck et al. recently showed that an iterative scheme
very similar to our own could be used to obtain an im-
proved ground-state energy [25]. Regardless of how the
linear constraints are obtained, the possibility of applying
multiple constraints to a single ground-state calculation
would not be possible using a wave-function-based ap-
proach, and necessitates a RDM methodology. Another

key point to note is that the Hamiltonian Ĥ of the system

itself need not have the same symmetry as Â in order for
new, efficient constraints to be obtained. For instance, we
could consider a system which is nearly translationally
invariant (a Hubbard model with mild disorder) and yet

could implement constraints based on exact translational

invariance. When we consider that any form of Â which
allows for an efficient calculation of amax will yield new
constraints, it becomes clear that the approach presented in
this Letter is extremely versatile and could potentially be
quite powerful.
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FIG. 1 (color online). The approximate energy versus the
number of active-space constraints for a L ¼ 6 site Hubbard
model with U=t ¼ 20. Initially, no additional constraints are
added, yielding EDGQ. A significant fraction of the energy

difference between the exact result and the DGQ answer can
be recovered by imposing a small number of active-space con-
straints. The larger the active-space, the more accurate the final
energy that is obtained.
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