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The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry

play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point

functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can

be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon.

The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and

black hole radiance.
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The prediction of thermal radiation by event horizons
can be considered as one of the most remarkable outcomes
of quantum field theory in curved spacetimes. This result
and its implications, in particular, those concerning black
holes, constitute one of the best insights that we have at
present about the features that a quantum theory of gravity
should possess. The thermal character of the radiation
emitted by a black hole is linked to the presence of an
event horizon. One characteristic of the event horizon is the
existence of an unbounded (exponentially growing) gravi-
tational blueshift that a particle with a given energy at
infinity experiences as it approaches the horizon. This
blueshift sweeps away any physical scale present in the
field theory and makes conformal symmetry arise in a
rather natural way. It has long been argued that the flux
of the thermal radiation is deeply connected to anomalies
related to the conformal symmetry arising near the horizon
[1–3] (for an extensive account, see [4]). Additionally,
hints indicating that conformal symmetry suffices to yield
the full spectrum (not only the flux) of thermal radiation
emitted by Schwarzschild black holes in four dimensions
were obtained in Refs. [5,6]. Higher-order moments of the
Planck distribution were obtained in Ref. [7] through an
involved analysis of higher-spin currents.

Furthermore, it has been argued that the near-horizon
conformal symmetry (which can emerge from different
perspectives [8–10]) is at the heart of the entropy of black
holes. Recently, the approach based on near-horizon
asymptotic symmetries [9] has been extended to rotating
(Kerr) black holes, suggesting a holographic duality be-
tween extremal and near-extremal Kerr black holes and a
2-dimensional conformal field theory (CFT) [11].
Additionally, the finite-temperature correlators of the
dual CFT provide the amplitudes for scattering of particles
off near-extremal Kerr black holes and therefore account
for the phenomenon of superradiance [12]. A further
step has more recently appeared in Ref. [13], where a

(finite-dimensional) conformal symmetry has been shown
to exist for the wave equation of a massless scalar field (in
the so-called near region) for a generic nonextremal Kerr
black hole. This finite-dimensional SOð2; 2Þ symmetry
accounts again for classical superradiance.
In view of the above results, it remains a challenge to

show that the full thermal spectrum can be derived from
conformal symmetry for a generic Kerr black hole. This is
the main goal of our Letter. An essential point in our
derivation is that, in the near-horizon region, the SOð2; 2Þ
conformal symmetry of the classical matter wave equation
is naturally enlarged to the conventional infinite-
dimensional group of conformal transformations in two
dimensions. This enlargement of the symmetry produces,
at the quantum level, anomalous transformations of the
vacuum state that are responsible for the phenomenon of
black hole thermal radiance. We show that the full spec-
trum of particles emitted by a rotating black hole can be
obtained essentially as the Fourier transform of the two-
point functions of primary fields of a 2-dimensional
CFT. The simplicity of our derivation illuminates in a
new way the essential role of conformal symmetry in
black hole radiance. This result may suggest new insight
on the conjectured relation between Kerr geometry and a
2-dimensional CFT.
Hawking’s original derivation of black hole radiance

[14] rests on the formalism of Bogolubov transformations
in the context of gravitationally induced particle creation
[15]. In short, the derivation considers two vacuum states:
The first, the in vacuum, coincides with the natural vacuum
at early times before the star has begun to collapse, and the
second, the out vacuum, coincides with the natural vacuum
at late times long after it has collapsed to form a black hole
as seen by a distant observer. The number of particles
measured in the ith mode by an out observer when the
field is in the in vacuum state is obtained by evaluating the
expectation value of the out number operator. This quantity

PRL 105, 211305 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 NOVEMBER 2010

0031-9007=10=105(21)=211305(4) 211305-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.211305


can be computed as hinjNout
i jini ¼ P

kj�ikj2, where �ik are
the Bogolubov coefficients relating the in and out field
modes (for details see, for instance, [16]). As explained
in Refs. [5,6], this expectation value can be conveniently
rewritten in terms of the two-point functions of the field as

hinjNout
i jini ¼

Z
�
d�

�
1 d�

�
2½fouti ðx1Þ@

$
��½fout�i ðx2Þ@

$
��

� ½hinj�ðx1Þ�ðx2Þjini
� houtj�ðx1Þ�ðx2Þjouti�; (1)

where fouti ðxÞ represent the field modes defining the out
vacuum state and � is an arbitrary Cauchy hypersurface.
The use of two-point functions here is particularly conve-
nient to determine and take advantage of the symmetries
present in the problem. Wewill use the above expression to
compute the spectrum of scalar particles emitted by a Kerr
black hole. First, we want to summarize some important
features of 2-dimensional CFT.

2-dimensional CFT and two-point functions.—Let us
consider a d-dimensional spacetime. A conformal trans-
formation of coordinates (see [17] for details) is an inver-
tible mapping x ! x0 which leaves the metric tensor
invariant up to scale. The set of these transformation forms
the conformal group SOðd; 2Þ. The case d ¼ 2 requires
special attention. In addition to the global transformations
SOð2; 2Þ, in d ¼ 2 the set of conformal transformations is
enlarged to the infinite-dimensional group of local (not
globally defined) transformations of the form xþ !
x0þðxþÞ and x� ! x0�ðx�Þ, where x� ¼ t� x are null
coordinates. Additionally, in a d ¼ 2 conformal field
theory there is a particular set of fields, called pri-
mary fields, that under all (global and local) conformal

transformations behave as ~�ðxþ; x�Þ ! ~�0ðx0þ; x0�Þ ¼
ð@x0þ
@xþ Þ�hþð@x0�@x� Þ�h� ~�ðxþ; x�Þ, where h� are the so-called

conformal weights. Typical examples of primary fields

are the derivatives ~� � @�� of a 2-dimensional massless
scalar field �. For example, we have hþ ¼ 1 and h� ¼ 0
for @þ� and the opposite weights for @��. Conformal
invariance leads, in addition, to the following transforma-
tion law of the two-point function (for illustrative purposes,
we will consider, for instance, @þ�):

h0j@þ�ðx1Þ@þ�ðx2Þj0i¼
�
dx0þ

dxþ

�
ðx0þ1 Þ

�
dx0þ

dxþ

�
ðx0þ2 Þ

�h0j@þ�ðx01Þ@þ�ðx02Þj0i; (2)

where j0i is the vacuum state of the theory. This require-
ment fixes the form of the two-point function to be

h0j@þ�ðx1Þ@þ�ðx2Þj0i ¼ � 1

4�

1

ðxþ1 � xþ2 Þ2
: (3)

The vacuum state j0i is invariant under the global confor-
mal group SOð2; 2Þ. However, it is not invariant under local
conformal transformations. This can be explicitly seen by
computing hinjNout

i jini, where here the in and out sets of

modes defining the jini � j0i and jouti vacuum states are
related by a conformal transformation. We can use expres-
sion (1) to evaluate this expectation value. Integrating by
parts in (1) and taking into account that the field modes fouti

vanish at spacelike infinity, one finds that the two-point
functions of the primary field @þ� emerge as the relevant
ones. Relation (2) can be then used to express the integral
in (1), for instance, in coordinates x0. Then, the kernel of
the integral, given by the difference of two-point functions,
reads

� 1

4�

dx0þ
dxþ ðx0þ1 Þ dx0þ

dxþ ðx0þ2 Þ
½xþðx0þ1 Þ � xþðx0þ2 Þ�2 þ

1

4�

1

ðx0þ1 � x0þ2 Þ2 : (4)

(A similar analysis holds for the opposite chiral sector.)
The important point here is that the elements of SOð2; 2Þ
are the only transformations producing a vanishing result
for this expression. This indicates the invariance of the
vacuum state under global conformal transformations.
However, the remaining (local) conformal transformations
of the form x� ! x0�ðx�Þ produce a nonvanishing value
for expression (4). The expectation value hinjNout

i jini is
then nonvanishing, showing the nonequivalence of the jini
and jouti vacua and the phenomena of particle production.
This is indeed a manifestation of the so-called Virasoro
anomaly, which is at the root of the radiation of particles by
black holes [1–4].
Scalar wave equation in Kerr geometry and

2-dimensional conformal symmetry.—Let us consider the
late time stages of the spacetime produced by the collapse
of a rotating star, when the geometry is described by the
stationary Kerr line element. In Boyer-Lindquist coordi-
nates, it reads

ds2 ¼ �

�2
ðdt� asin2�d�Þ2

� sin2�

�2
½ðr2 þ a2Þd�� adt�2 � �2

�
dr2 � �2d�2;

(5)

where � ¼ ðr� rþÞðr� r�Þ, �2 ¼ r2 þ a2cos2�, and

r� ¼ M� ðM2 � a2Þ1=2. The parameters M and a repre-
sent the mass and the angular momentum per unit mass of
the black hole, respectively. We will assume that a2 <M2.
The event horizon of the Kerr black hole is located at
r ¼ rþ. The line element (5) is stationary and axisymmet-
ric, with @

�
t and @

�
� the corresponding Killing vector fields.

One of the most interesting properties of Kerr geometry is
the existence of a region outside the event horizon where
the vector field @�t becomes spacelike. The combination
�� ¼ @�t þ�H@

�
�, with �H ¼ a=ðr2þ þ a2Þ, defines here

the Killing vector field that generates the horizon. It is null
at r ¼ rþ and timelike for r > rþ in the near-horizon
region r� rþ � M. It is then convenient to define the

coordinates ~t ¼ t and ~� ¼ ���Ht. We have then
@�~t ¼ ��. It is also appropriate to define the radial coor-

dinate r� such that dr�=dr ¼ ðr2 þ a2Þ=�.
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Let us now consider a massive scalar field �ðxÞ propa-
gating in theKerr geometry (5). TheKlein-Gordon equation
ðhþ�2Þ�ðxÞ ¼ 0 admits a full separability of variables:

�ðt; r; �; �Þ ¼ X
A;m

�A;mðr; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p ZA;mð�;�Þ; (6)

where �A;mðr; tÞ ¼
R
dw�A;mðr; wÞe�iwt. The solutions of

the angular equation, ZA;mð�;�Þ ¼ ð1= ffiffiffiffiffiffiffi
2�

p ÞSA;mð�Þeim�,

are the so-called spheroidal harmonics. The functions
SA;mð�Þ are eigenfunctions of the spheroidal angular equa-
tion with eigenvalue A. The spheroidal harmonics form
an orthonormal set of angular functions characterized by
A and m, such that

R
d�dðcos�ÞZA;mð�;�ÞZ�

A0;m0 ð�;�Þ ¼
	A;A0	m;m0 .

The radial equation takes the form ½d2=dr2� þ
VðrÞ��A;mðr; wÞ ¼ 0. The potential VðrÞ has a simple

form in the asymptotic regions. As r ! 1, V !
w2 ��2 and the ðt; rÞ part of the solutions behaves as in

Minkowski spacetime �e�iðwt�krÞ, with k2 ¼ w2 ��2. In
the region near the horizon (r� ! �1) it is more conve-

nient to employ coordinates ð~t; r�; �; ~�Þ. The potential
takes the simple form V � ~w2 as r� ! �1, where ~w ¼
w��Hm. This is a consequence of the exponential blue-
shift intrinsic to the event horizon, which shifts away any
physical scale (such as the mass of the field or the cen-
trifugal potential barrier). The physics near the horizon
then can be described by the infinite set of (1þ 1)-
dimensional massless fields �A;mð~t; r�Þ propagating in the

ð~t; r�Þ plane. In ð~t; r�; �; ~�Þ coordinates, the ð~t; r�Þ part of
the solutions to the wave equation is ingoing and outgoing

modes of the form ðe�i ~wð~tþr�Þ; e�i ~wð~t�r�ÞÞ ¼ ðe�i ~wv; e�i ~wuÞ,
where v � ~tþ r� and u � ~t� r� are null coordinates.
These modes are positive frequency modes with respect
to the Killing vector field �� ¼ @

�
~t for ~w> 0. They are

solutions of the wave equation @u@v�A;mðu; vÞ ¼ 0, which
is manifestly invariant under the infinite-dimensional
group of conformal transformation in two dimensions u !
u0ðuÞ, v ! v0ðvÞ. In the following, we will show how this
conformal symmetry is at the heart of the phenomenon of
thermal emission of particles by black holes.

Thermal radiation by Kerr black holes and 2-
dimensional CFT.—The phenomenon of thermal radiation
by a rotating black hole was first derived by Hawking [14].
As mentioned above, in the original derivation Hawking
considered the state of the field given by the vacuum
defined at early times, before the star begins to collapse.
However, as pointed out by Unruh [18], the result is
equivalently obtained by substituting the state of the field
by the vacuum defined by a freely falling observer crossing
the horizon at the time when the surface of the collapsing
star enters the horizon. In that way, the vacuum state can be
defined by using appropriate boundary conditions for the
field in the near-horizon region. We want to define two
vacuum states by using the two natural notions of time
translation of the Kerr geometry, namely, the Killing time
and the proper time as measured by a congruence of freely

falling observers. To define the out vacuum state, we con-
sider a set of orthonormal (with respect to the standard
Klein-Gordon product) modes that in the near-horizon
region are outgoing modes of the form fout~w;A;m¼fout~w ðuÞ
ZA;mð�; ~�Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p
, where fout~w ðuÞ¼e�i ~wu=

ffiffiffiffiffiffiffiffiffiffi
4� ~w

p
. We

can construct wave packets from the previous modes in

the usual way [14] foutj;n ¼ 1



Rðjþ1Þ

j
 d ~we2�i ~wn=
fout~w ðuÞ, with

integers j 	 0 and n 
 1. These packets are localized in
the near-horizon region and are peaked around the late time
u ¼ 2�n=
, with width 2�=
. Taking 
 small ensures that
the frequency of the modes is narrowly centered around
~w � ~wj ¼ j
. The previous modes have positive norm if

~w> 0, and they are positive frequency modes with respect
to the Killing vector ��, which is timelike in the near-
horizon region. Because of the potential barrier VðrÞ of the
wave equation, these modes will split up in two parts
during their propagation. A fraction jrA;mj2 of the wave

packet will be reflected by the potential barrier and will fall
down into the black hole, where rA;m is the reflection

coefficient of the potential. On the other hand, a fraction
�A;m ¼ 1� jrA;mj2 of the wave packet will be transmitted,

reaching the asymptotic region where the wave packet is of
positive frequency with respect to the standard Killing time
t. The modes foutj;n correspond to the so-called up modes in

the eternal extension of the black hole geometry. By ex-
panding the field operator as � ¼ P

~w;A;ma
out
~w;A;mf

out
~w;A;m þ

. . . , the out vacuum state jouti is defined as the state
annihilated by the operators aout~w;A;m. Additionally, we spec-

ify that jouti contains no ingoing radiation falling into the
black hole. The particular form of the modes describing
ingoing radiation will not affect the computations of par-
ticle production far from the black hole at late times.
In order to define the in vacuum state, let us write the

Kerr line element in the near-horizon region in terms of
Kruskal-like coordinates defined as U ¼ ���1e��u, V ¼
��1e�v, where � ¼ ðrþ � r�Þ=½2ðr2þ þ a2Þ� is the surface
gravity of the black hole horizon. By taking d� ¼ d ~� ¼ 0
(without restricting the physics, we take, for simplicity,
coordinate V � 0), the metric has the simple form ds2 �
CðdT2 � dR2Þ, where U ¼ T � R, V ¼ T þ R, and C is a
finite constant that, without loss of generality, we take
equal to 1. We can see that the ðT; RÞ part of the metric
near the horizon has the form of the Minkowski metric.
The interval of time �T then corresponds to the interval of

proper time of a radial (� and ~� constant) freely falling
observer crossing the horizon. Therefore, the modes

fin�;A;m¼fin� ðT;RÞZA;mð�; ~�Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þa2

p
, where fin� ðT; RÞ ¼

e�ið�T�KRÞ=
ffiffiffiffiffiffiffiffiffiffi
4��

p
(with K2 ¼ �2 ��2), are positive

frequency modes with respect to the freely falling ob-
server for �> 0. Expanding the field operator as � ¼P

�;A;ma
in
�;A;mf

in
�;A;m þ . . . , the in vacuum state jini is de-

fined as the state annihilated by the operators ain�;A;m and

containing no ingoing radiation coming from infinity. This
state corresponds to the so-called Unruh vacuum defined in
the maximally extended geometry.
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We can now use Eq. (1) to compute the expectation
value of the out number operator in the in vacuum state.
Let us consider a Cauchy hypersurface C, constructed such
that it is a null hypersurface in the near region outside the
horizon forU >U0, withU0 a negative constant (we recall
that U ¼ 0 at the horizon and U ! �1 when r ! 1).
Additionally, for U � U0 and for U > 0 (inside the hori-
zon), C is a spatial hypersurface. Because we are dealing
with sharply localized wave packets near the horizon, the
particular value of U0 is unimportant. The integrals in (1)
are extended over the (null) region of C where the wave

packets foutj;n ðuÞ have support. There we have d��@� ¼
dudðcos�Þd ~�ðr2 þ a2Þ@u. We can take advantage of the
orthogonality of the spheroidal harmonics to integrate the
angular part in (1). An additional integration by parts gives

hinjNout
j;n jini ¼ 4

Z
C
du1du2f

out
j;n ðu1Þfout�j;n ðu2Þ

� ½hinj@u1�A;mðu1Þ@u2�A;mðu2Þjini
� houtj@u1�A;mðu1Þ@u2�A;mðu2Þjouti�: (7)

The relevant out two-point function in the near-horizon
region can be easily computed as a sum in modes
houtj@u1�A;mðu1Þ@u2�A;mðu2Þjouti ¼ � 1

4�
1

ðu1�u2Þ2 . The

two-point function corresponding to the jini state can
also be computed as a sum in modes, and, when evaluated
at the null near-horizon portion of C, it takes the simple
form hinj@U1

�A;mðU1Þ@U2
�A;mðU2Þjini ¼ � 1

4�
1

ðU1�U2Þ2 ,
where we can explicitly see that, as a by-product of con-
formal invariance, the mass of the field has disappeared.
Introducing these two-point functions in (7), we have

hinjNout
j;n jini ¼ 4

Z
C
du1du2f

out
j;n ðu1Þfout�j;n ðu2Þ

�
�
� 1

4�

dU
du ðu1Þ dUdu ðu2Þ

½Uðu1Þ �Uðu2Þ�2

þ 1

4�

1

ðu1 � u2Þ2
�
: (8)

This expression makes it manifest that the particle number
is obtained by comparing the local behavior of the two-
point functions of the 2-dimensional primary fields
@u�A;mðuÞ and @U�A;mðUÞ, together with the conformal

transformation UðuÞ ¼ ���1e��u. Here, local means
the near-horizon region where the wave packets foutj;n ðuÞ
have support. Additionally, the conformal transformation
UðuÞ ¼ ���1e��u is a local transformation that does not
belong to the global group of conformal transformations in
two dimensions: SOð2; 2Þ. Hence, as explained above, the
function between square brackets in (8) is nonvanishing
[compare this expression with (4)], leading to a nonzero
value for hinjNout

j;n jini. Additionally, its leading term in

an expansion about the coincidence point u1 ! u2 is
�c=ð24�ÞfU; ug, where fU; ug is the Schwarzian derivative
of UðuÞ and c ¼ 1 is the central charge of the scalar field.

This fact makes manifest the underlying connection be-
tween black hole particle production and the conformal
anomaly. For wave packets sharply peaked around ~wj,

simple manipulations lead to

hinjNout
~wj
jini ¼ �1

2� ~wj

Z
dze�i ~wjz

� ð�=2Þ2
sinh2½�2 z�

� 1

z2

�
;

where we have defined z � u1 � u2. This integral can be
easily computed and results in the well-known Planckian
distribution of particles. An observer at the late time region
of the asymptotic future will observe a thermal flux of
particles at temperature �=2� with the spectrum addition-

ally modulated by the gray-body coefficients �A;m,
�A;m

e2�~w=��1
,

with ~w ¼ w��Hm.
Conclusions.— Finite-dimensional [SOð2; 2Þ] confor-

mal invariance of the matter wave equation is related to
classical superradiance [13]. We have pointed out here that
the full local conformal invariance of the wave equation
emerging near the horizon accounts for the full quantum
phenomena of black hole radiance.
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