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CNRS UMR 7600, Tour 13 - 5ième étage, Boı̂te Courrier 121, 4 place Jussieu, F 75252 Paris Cedex 05, France

2Nicolaus Copernicus University, Institute of Physics, ulica Grudzia̧dzka 5/7, PL 87-100 Toruń, Poland
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We study functions g�ðxÞ which are one-sided, heavy-tailed Lévy stable probability distributions

of index �, 0<�< 1, of fundamental importance in random systems, for anomalous diffusion

and fractional kinetics. We furnish exact and explicit expressions for g�ðxÞ, 0 � x <1, for all

� ¼ l=k < 1, with k and l positive integers. We reproduce all the known results given by k � 4 and

present many new exact solutions for k > 4, all expressed in terms of known functions. This will allow a

‘‘fine-tuning’’ of � in order to adapt g�ðxÞ to a given experimental situation.
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Theoretical description of many collective physical sys-
tems which includes a special sort of disorder or random-
ness often requires a radical departure from classical
diffusive behavior. On the probabilistic level this signifies
the appearance of distributions with nonconventional
characteristics, such as diverging mean and variance along
with all integer moments different from the zeroth one.
In this context the discovery of particular distributions
with these properties plays the dominant role. They are
now called the Lévy stable laws [1], whose generic example

is g1=2ðxÞ ¼ ð2 ffiffiffiffi
�

p
x3=2Þ�1 expð�1=4xÞ, x � 0; the word

‘‘stable’’ means here that the product of characteristic
functions (CF) of two such laws is a CF of another law
of the same type [1]. The general distribution of that type
g�ðxÞ can be shown to possess the CF or the Laplace trans-
form of the form [2–4]

Z 1

0
e�pxg�ðxÞdx ¼ e�p�

; p > 0; 0<�< 1; (1)

which is the well-known Kohlrausch-Williams-Watts func-
tion [5] or stretched exponential. Several independent
proofs can be given that g�ðxÞ obeying Eq. (1) is positive
[2,3,6].

The functions g�ðxÞ are ubiquitous in many fields of
condensed and soft matter physics [7–9], geophysics [10],
meteorology [11], economics [12], fractional kinetics
[13,14], etc. For instance, the value � ¼ 1=4 is thought
to describe mechanical and dielectric properties of
glassy polymers [15]. It is also confirmed that the same
value of � is relevant for a statistical description of sub-
recoil laser cooling [16,17]. In general, numerous phe-
nomena falling in the class of subdiffusion [18] call for
g�ðxÞ, �< 1, in their theoretical description. On the theo-
retical side, the Lévy stable distributions are essential tools
in the study of random maps and resulting combinatorial
structures [19]. The actual use of Lévy stable type distri-
butions has been hampered for subjective and objective
reasons [20,21]. The subjective ones include a certain

reticence to use distributions with both mean and variance
diverging. The main objective reason is a lack of knowl-
edge of g�ðxÞ for most values of �. The existing interpo-
lation formulas [15] appear to be cumbersome to use.
It seems that obtaining explicit g�ðxÞ for arbitrary 0<

�< 1 constitutes a true challenge: the explicit forms of
g�ðxÞ are known only for a limited number of values of �,
i.e., � ¼ 1=2 [see g1=2ðxÞ above], 1=4 [22], 1=3 [23], 2=3
[24], and 3=4 [23]. The formal solution for arbitrary� [4,9]
is only of limited use as it requires series or asymptotic
expansions, which may become problematic, especially for
small �.
The objective of this work is to present a universal

formula for g�ðxÞ, � ¼ l=k, with k > l positive integers,
which is exact and explicit. It reproduces all the known
cases enumerated above, and yields an infinity of new
solutions for k > 4, of which we quote, for the first time,
several instances.
Equation (1) for � ¼ l=k can be inverted giving

gl=kðxÞ ¼
ffiffiffiffiffi
kl

p

ð2�Þðk�lÞ=2
1

x
Gk;0

l;k

�
ll

kkxl

��������
�ðl; 0Þ
�ðk; 0Þ

�
; (2)

valid for all x � 0, where Gm;n
p;q ðzjðapÞðbqÞÞ is the Meijer G

function [25,26] and �ðk; aÞ ¼ a
k ;

aþ1
k ; . . . ; aþk�1

k is a spe-

cial list of k elements. Equation (2) is listed without proof
as a special case for � ¼ 0 and a ¼ 1 of formula 2.2.1.19,
in Vol. 5 of [26]. The detailed demonstration of Eq. (2) with
a combined use of Laplace and Mellin transforms will be
given elsewhere. It turns out that the right-hand side of
Eq. (2) is a finite sum of k� 1 generalized hypergeometric

functions of type pFqððapÞðbqÞ jzÞ [26]:

gl=kðxÞ¼
Xk�1

j¼1

bjðk;lÞ
x1þjlk

lþ1Fk

�
1;�ðl;1þjl=kÞ
�ðk;jþ1Þ

��������ð�1Þk�l ll

kkxl

�
;

(3)

where bjðk; lÞ are numerical coefficients given by
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bjðk; lÞ ¼ ljl=k
ffiffiffiffiffi
kl

p

kjð2�Þðk�lÞ=2

hQj�1
i¼1 �

�
i�j
k

�ihQ
k�1
i¼jþ1 �

�
i�j
k

�i

Q
l�1
i¼1 �

�
i
l � j

k

� ;

(4)

where �ðyÞ is Euler’s gamma function. Equation (3) is the
exact implementation of the program outlined in the fun-
damental work of Scher and Montroll [23], in which it was
conjectured that gl=kðxÞ can be expressed in terms of pFq’s.

However, in [23] actually only one new instance g3=4ðxÞ
was written down. Our formula Eq. (3), after appropriate
reductions in pFq’s, see below, gives all exactly known

cases mentioned above [20–23], with g1=4ðxÞ [22],

g1=4ðxÞ ¼ b1ð4; 1Þ
x5=4 0F2

� �
1=2; 3=4

��������
�1

44x

�

þ b2ð4; 1Þ
x3=2 0F2

� �
3=4; 5=4

��������
�1

44x

�

þ b3ð4; 1Þ
x7=4 0F2

� �
5=4; 3=2

��������
�1

44x

�
; (5)

and offers an unlimited number of new solutions for
gl=kðxÞ, k > 4, e.g.,

gp=5ðxÞ ¼
X4

j¼1

bjð5; pÞ
x1þjp=5 pþ1F5

�
1;�ðp; 1þ jp=5Þ

�ð5; jþ 1Þ
��������

pp

55xp

�
;

(6)

p ¼ 1; . . . ; 4; see Table I for coefficients in Eqs. (5) and (6),
etc.

The symbol �ðk; aÞ in Eq. (3) permits one to encode all
the possible cases of k and l in a single formula. However,
we draw attention to the fact that cancellations will appear
there due to the obvious identity

pþrFqþr

�ðapÞ; ð�rÞ
ðbqÞ; ð�rÞ

��������x
�
¼ pFq

�ðapÞ
ðbqÞ

��������x
�
;

where (�r) is an arbitrary sequence of r parameters not
equal to zero or to negative integers. Thus Eq. (5) is a sum
of three 0F2 functions, and likewise g3=4ðxÞ, which is not

specified here, will be a sum of three 2F2 functions, neatly
confirming Eq. (C10) of [23], etc. In this manner for any
l=k, a closed form of gl=kðxÞ can be obtained from Eq. (3).

However, only for k � 3 can it be written down in terms of
standard special functions [5,20,21,23,24].
A heuristic indication of how Eq. (3) comes about can be

obtained from the series representation for g�ðxÞ derived
by Humbert [27], discussed, for example, by Hughes [28]
and used in [19]. The series

g�ðxÞ ¼ 1

�

X1

j¼1

ð�1Þjþ1

j!x1þ�j
�ð1þ �jÞ sinð��jÞ (7)

is a convergent expansion valid for all 0<�< 1 and
x > 0. For � ¼ l=k the decomposition of the summation
index j modulo k yields an equivalent representation of
gl=kðxÞ as a sum of k� 1 infinite series. The structure of the
coefficients in each of these series involves gamma func-
tion ratios of type �ðliþ �Þ=�ðkiþ�Þ, where i is the new
summation index and � and � are simple functions of k
and l. The application of the Gauss-Legendre multiplica-
tion formula to both of these gamma functions allows the
identification of pFq’s in Eq. (3) and the extraction of

coefficients bjðk; lÞ of Eq. (4).
The advantage of our solution, Eqs. (3) and (4) over

Eq. (7) is clearly seen in practice, in conjunction with the
use of computer algebra systems [29]. Since in recent
versions of these systems the hypergeometric functions

pFq as well as the Meijer G function are fully imple-

mented, their use permits high-precision calculations. For
the reader’s convenience we give in [30] the MAPLE�
syntax for gl=kðxÞ; see Eq. (2) above. Our experience

indicates that for small � our results for small x are more
practical to use than the x ! 0 asymptotics given in [3].
The reason is that there the region of applicability of
Mikusiński’s asymptotic expansion [3] shrinks to exceed-
ingly small values of x. For example, for � ¼ 1=20,
g1=20ð0Þ ¼ 0, but a huge peak in g1=20ðxÞ appears already
at x� 10�14. In contrast, our formulas work fine for any x
in this region. In the opposite limit for � & 1 the Humbert
expansion Eq. (7) is slowly convergent for x < �, but

TABLE I. Coefficients of Eqs. (5) and (6); A ¼ sinð�=5Þ and B ¼ sinð2�=5Þ.
j 1 2 3 4

bjð4; 1Þ 1
4�ð34Þ

�1
4
ffiffiffi
�

p ffiffi
2

p
�ð34Þ

16�
� � �

bjð5; 1Þ
ffiffi
5

p
�ð15Þ

20�B

� ffiffi
5

p
�ð25Þ

20�A

ffiffi
5

p
�ð35Þ

40�A

� ffiffi
5

p
�ð45Þ

120�B

bjð5; 2Þ
ffiffi
5

p �22=5�ð15Þ
10

ffiffiffi
�

p
�ð 310ÞB

� ffiffi
5

p �24=5�ð25Þ
10

ffiffiffi
�

p
�ð 110ÞA

� ffiffi
5

p �21=5�ð35Þ
100

ffiffiffi
�

p
�ð 910ÞA

ffiffi
5

p �23=5�ð45Þ
100

ffiffiffi
�

p
�ð 710ÞB

bjð5; 3Þ 3
ffiffi
5

p �31=10�ð15Þ
10�ð 215Þ�ð 715ÞB

ffiffi
5

p �37=10�ð25Þ
50�ð 415Þ�ð1415ÞA

�3
ffiffi
5

p �33=10�ð35Þ
25�ð 115Þ�ð1115ÞA

�7
ffiffi
5

p �39=10�ð45Þ
750�ð 815Þ�ð1315ÞB

bjð5; 4Þ 4�21=105�1=2
ffiffiffi
�

p
�ð15Þ

�ð 310Þ�ð 120Þ�ð1120ÞB
6�27=105�3=2

ffiffiffi
�

p
�ð25Þ

�ð 110Þ�ð 720Þ�ð1720ÞA
14�23=105�5=2

ffiffiffi
�

p
�ð35Þ

�ð 910Þ�ð 320Þ�ð1320ÞA
11�29=105�7=2

ffiffiffi
�

p
�ð45Þ

�ð 710Þ�ð 920Þ�ð1920ÞB
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approximation [3] works well as then g�ðxÞ is very close to
zero in a considerable region near x ¼ 0 [e.g., already for
� ¼ 5=6 the function g5=6ðxÞ is practically equal to zero up
to x � 0:35]. Such a practically flat region for small x can
also be seen for � ¼ 4=5; compare curve III on Fig. 3.

In Fig. 1 we compare three distributions for l=k ¼ 1=2,
1=3, and 1=4. The salient feature for l=k ¼ 1=4 is the
appearance of a sharp maximum for very small x so that
these three curves can be barely shown on the same scale.
Analogously, for l=k ¼ 1=5 the maximum of g1=5ðxÞ ap-
pears at x0ð1=5Þ � 0:0002 and the value g1=5ðx0Þ � 25. For
x < x0ð1=5Þ the values of g1=5ðxÞ are very close to zero. As
already mentioned above, for smaller values of l=k this
type of behavior is even more pronounced and it explains
a posteriori the difficulties encountered in devising ap-
proximations valid for small l=k and small x [15,24]. In
Fig. 2 we present the comparison of several distributions
for values l=k � 1=2. Here the ’’sharpening’’ of the dis-
tributions, as l=k goes from 1=2 to smaller values, is very
clearly visible but is less dramatic than in Fig. 1. We
present in Fig. 3 the new distributions gp=5ðxÞ given by

Eq. (6) for p ¼ 2, 3, and 4.
All these probability distributions share the fol-

lowing features: (a) g�ðxÞ ! 0, for x ! 0, where they

present an essential singularity �x½ð�2þ�Þ=2ð1��Þ�

exp½�Að�Þx��=ð1��Þ�, Að�Þ> 0 [3]; (b) g�ðxÞ !
Bð�Þx�ð1þ�Þ, for x ! 1,Bð�Þ> 0, indicating heavy-tailed
asymptotics for large x; (c) all their fractional moments
M�ð�Þ ¼ R1

0 x�g�ðxÞdx ¼ �ð��=�Þ=½��ð��Þ�, for

real �, �1<�<�, including M�ð0Þ ¼ 1, are finite,
and are infinite otherwise; (d) g�ðxÞ are unimodal with the
maximum at x0ð�Þ, and x0ð�Þ ! 0 as � ! 0.

The distributions g�ðxÞ constitute basic ingredients of all
theories of anomalous diffusion where they are employed
to produce solutions P�ðx; tÞ in the space-time domain of
various forms of the Fokker-Planck equations along with
their fractional generalizations [6,22]. For instance, in [22]
P�ðx; tÞ is given as a convolution (called there inverse Lévy
transform) of d

ds ½�g�ðt=s1=�Þ� with P1ðx; tÞ being a nor-

malized solution of the ordinary Fokker-Planck equation;
see Eq. (1) in [22]. The explicit forms of g�ðxÞ presented
here will permit further development of this ambitious
approach.
The availability of gl=kðxÞ makes it possible to fully

describe the long tail distributions of carrier transit times
in amorphous materials such as As2Se3 and trinitrofluor-
enone and polyvinylcarbazole (TNF-PVK). In fact, in clas-
sic work [23] the measured values of � for these two
materials were � ¼ 0:45 and � ¼ 0:8 respectively; com-
pare Fig. 6 of [23]. These values were for a long time
intractable theoretically. From now on, setting � ¼ 9=20
and � ¼ 4=5 in our Eqs. (2) and (3) directly provides the
sought-for framework for interpretation of these data. The
appropriate distributions are presented as curve II in Fig. 2
(� ¼ 9=20) and curve III in Fig. 3 (� ¼ 4=5).
We believe that the exact forms of g�ðxÞ obtained in this

work, along with their asymptotics for x ! 1 and
exact values of fractional moments, constitute a solid basis
to extract a value of � best suited for an experimental
situation at hand. Once it has been done, such descrip-
tion can be further fine-tuned by choosing values of k
and l which would optimize the choice of �. We hope
that this approach will prove useful in practical
applications.

FIG. 1. Comparison of gl=kðxÞ. Curves I, II, and III correspond
to l=k ¼ 1=4 [see Eq. (5)], 1=3, and 1=2, respectively.

FIG. 2. Comparison of gl=kðxÞ. Curves I, II, III, IV, and V
correspond to l=k ¼ 2=5, 9=20, 1=2, 11=20, and 3=5, respec-
tively. Calculations were performed using Eqs. (3) and (4).
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[1] J.-P. Kahane, in Lévy Flights and Related Topics in
Physics, edited by M. F. Shlesinger, G.M. Zaslavsky,
and U. Frisch, Lecture Notes in Physics Vol. 450
(Springer, Berlin, 1995).

[2] H. Pollard, Bull. Am. Math. Soc. 52, 908 (1946).
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