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CNRS UMR 7600, 4 Place Jussieu, 75752 Paris Cedex 05, France
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‘‘Quasistationary’’ states are approximately time independent out of equilibrium states which have been

observed in a variety of systems of particles interacting by long-range interactions. We investigate here the

conditions of their occurrence for a generic pair interaction Vðr ! 1Þ � 1=r� with � > 0, in d > 1

dimensions. We generalize analytic calculations known for gravity in d ¼ 3 to determine the scaling

parametric dependences of their relaxation rates due to two-body collisions, and report extensive

numerical simulations testing their validity. Our results lead to the conclusion that, for � < d� 1, the

existence of quasistationary states is ensured by the large distance behavior of the interaction alone, while

for � > d� 1 it is conditioned on the short distance properties of the interaction, requiring the presence of

a sufficiently large soft core in the interaction potential.
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In recent years there has been renewed interest in the
statistical physics of long-range interactions (for a review,
see, e.g., [1]), a subject which has been treated otherwise
mostly in the astrophysical literature for the specific case of
gravity. The defining property of such interactions is the
nonadditivity of the potential energy of a uniform system,
which corresponds to the nonintegrability at large distances
of the associated pair interaction, i.e., a pair interaction
Vðr ! 1Þ � 1=r� with � < d in d space dimensions. The
equilibrium thermodynamic analysis of these systems is very
different to the canonical one for short-ranged interactions
(with �> d), leading notably to inhomogeneous equilibria
as well as other unusual properties—e.g., nonequivalence of
the statistical ensembles, negative specific heat in the micro-
canonical ensemble. Studies of simple toy models have
shown that, like for gravity in d ¼ 3, these equilibria
(when defined) are reached only on time scales which are
extremely long compared to those characteristic of the
mean-field dynamics. On the latter time scales one observes
typically the formation, through ‘‘violent relaxation,’’ of so-
called ‘‘quasistationary’’ states (QSS), interpreted theoreti-
cally as stable stationary states of theVlasov equation (which
describes the kinetics in the mean-field limit). In this Letter
we consider whether the occurrence of such QSS driven by
mean-field dynamics can be considered as a behavior arising
generically when there are long-range interactions in play.
Using both simple analytical results and numerical simula-
tions, we argue for the conclusion that it is only for � < d�
1, i.e., when the pair force is absolutely integrable at large
separations, thatQSScanbe expected tooccur independently
of the short distance properties of the interaction. For � >

d� 1, on the other hand, their occurrence will be condi-
tioned strongly also on short distance properties, and thus
cannot be considered to be a result simply of the long-range
nature of the interaction. Our analysis shows the relevance of
a classification of the range of interactions according to the
convergence properties of forces rather than potential ener-
gies which has been formalized in [2].
We proceed by first generalizing a calculation originally

given by Chandrasekhar for Newtonian gravity to a system
of N particles interacting by a pair potential VðrÞ ¼ g

r�

(where g is a coupling constant). This calculation, which
numerical studies indicate is accurate both parametrically
and quantitatively for gravity (see, e.g., [3–7]), will give us
an estimate of �2, the relaxation rate due to two-body
collisions (i.e., the inverse of the time scale on which a
typical particle’s velocity is randomized by such interac-
tions). Denoting by �mf the characteristic time for the
formation of a QSS (i.e., of the mean-field dynamics),
the criterion for the existence of QSS we will then study is

�2�mf ! 0 when N ! 1; (1)

where the limit N ! 1 corresponds to the mean-field or
Vlasov limit [1]. Indeed, if this condition is not satisfied, it
implies that there is no mean-field regime in which QSS
may form.
Following the treatment for the case of gravity (see,

e.g., [3], Sec. 1.2.1) we consider a test particle of velocity
v crossing a system in a QSS, assumed spherical and of
radius R and approximated as homogeneous. We estimate
first the rate of relaxation due to soft two-body collisions
by calculating �v2, the mean square velocity change of a
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particle per crossing (i.e. in a time of order �mf) due to such
collisions. It is straightforward to show that

�v2

v2
� N

�
g

mv2R�

�
2 Z bmax=R

bmin=R

dx

x2��dþ2
; (2)

where bmin is the minimal impact parameter at which
the scattering is soft (i.e., the deflection angle is small),
defined by

jgj
mv2b�min

� 1; (3)

and bmax is the maximal impact parameter for two-body
collisions. In these formulas, and in what follows below,
we use the symbol� to indicate that the numerical factors
in all expressions have been dropped, leaving only the
parametric dependences which are relevant to our consid-
erations here. In the case of gravity in d ¼ 3 the choice of
bmax has been a source of debate, with numerical simula-
tions indicating that bmax � R accounts better for results
than the more evident choice bmax � ‘, the mean interpar-
ticle separation (see, e.g., [4]). We consider in what follows
both possibilities, and will see that our central results are
not in fact sensitive to which is correct. We have also
implicitly assumed d > 1 and � > 0.

We now write

�2�mf ¼ �soft�mf þ �hard�mf ; (4)

where the first contribution is that considered above, and
the second is the remaining one from hard scatterings, i.e.,
collisions with impact factors b < bmin. Taking now that
�mf � R

v , it is straightforward to deduce from Eq. (2) that,

for sufficiently large N,

�soft�mf �

8>><
>>:
N�1

�
bmax

R

��2�þd�1
if � < ðd� 1Þ=2;

N�1

�
R

bmin

�
2��dþ1

if � > ðd� 1Þ=2;
(5)

if bmin=bmax � 1 for large N. To infer these scalings we
need only (as in the corresponding derivation for the case
of gravity [3]) use the fact that the QSS is, by definition, a
virialized state, i.e., we take

g

mv2R� � 1

N

gN2

ðmNv2ÞR�
� 1

N

U

K
� 1

N
; (6)

where U, the total potential energy of the QSS, and K, its
total kinetic energy, have a fixed ratio because of virializa-
tion. This scaling with N corresponds to that in the usual
mean-field or Vlasov limit, in which U and K both scale in
the same way with N.

Using again the scaling Eq. (6), the definition Eq. (3)
gives

bmin � RN�ð1=�Þ: (7)

Note first that this implies bmin=bmax ! 0 as N ! 1 for

any � > 0 if bmax � R, and for any 0< �< d if bmax �
‘� RN�1=d, so that Eq. (5) is indeed valid in these cases.
Using now again Eq. (7) in Eq. (5) we obtain the scaling

�soft�mf �
�
N�ð1þj�jÞ if � < ðd� 1Þ=2;
N�ðd�1��Þ=� if � > ðd� 1Þ=2; (8)

where � ¼ 0 if bmax � R, and � ¼ ð�2�þ d� 1Þ=d if

bmax � RN�1=d. It follows that, for �> d� 1, the contri-
bution of soft two-body scatterings alone diverges at large
N, so that the criterion (1) cannot be satisfied in this case
for the ‘‘candidate’’ QSS. For any � < d� 1, on the other
hand, the contribution �soft�mf vanishes as N ! 1. It is
simple to show, in this case, that �hard�mf also goes to zero
when N ! 1, and thus that the condition (1) for the
existence of QSS may be satisfied. To do so it is sufficient
to consider that this contribution can be bounded below by
that from an ‘‘exactly hard’’ core with radius � ¼ bmin, i.e.,
VðrÞ ¼ 1 for r < bmin. Estimating the collision rate on
such a core as �hc � n�v where n is the mean density and
�� �d�1 (the cross section), we obtain

�hc�mf � N

�
�

R

�
d�1 � N�ðd�1��Þ=� (9)

when we take � ¼ bmin, with the latter scaling as in Eq. (7).
It follows that �hard�mf � �hc�mf ! 0 as N ! 1 for � <
d� 1. Further it follows from the inferred scaling of
�hc�mf that, for � < d� 1, the total rate �2 will scale as
calculated for �soft in Eq. (8). In other words, an exact
calculation including �hard should give, at most, a �2 larger
than �soft by a numerical factor.
A corollary of these results, which are summarized in

Table I, is that, for a QSS to exist in the case that �> d�
1, the pair potential must include a sufficiently large soft
core. Indeed to remove the divergence of �soft�mf in this
case, we must introduce a smoothing of the potential at a
scale �which vanishes more slowly than bmin in Eq. (7). In
this case �soft�mf is given by the second expression in Eq.
(5) but with bmin replaced by �. Keeping �=R constant, for
example, gives �soft�mf � N�1 ! 0 as N ! 1 for any �.
If the core is ‘‘exactly soft,’’ i.e., VðrÞ ¼ g=�� for r < �we
have �hard ¼ 0 and the satisfaction of the condition Eq. (1)
follows. If the core is hard, as envisaged above, it is clear
that the same is not true. Indeed it is simple to check using
Eq. (9) that it is not possible to choose � in order to satisfy
both �hc�mf ! 0 and �soft�mf ! 0 simultaneously as N !
1 for � > d� 1.

TABLE I. Summary of two-body collision rates (without core).

0< �< d�1
2 Soft collisions at �bmax dominate �soft�mf � N�ð1þj�jÞ � �hard�mf

d�1
2 < �< d� 1 Collisions at �bmin dominate �soft�mf � N� d�1��=�ð Þ � �hard�mf

� > d� 1 �soft�mf and �hard�mf divergent in N
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These results lead then to the primary conjecture of this
article: for pair potentials with Vðr ! 1Þ � 1=r�, QSS can
always exist if there is a sufficiently large soft core, but only
for � < d� 1 can they exist when such a core is not present
(i.e., when its size � ! 0). The validity of this conclusion
rests evidently on the assumption that the dominant correc-
tion to the mean-field dynamics is, just as for gravity in d ¼
3, two-body collisionality. More specifically we also require
the parametric dependences of the inferred relaxation rates,
which have been derived using various simplifying approx-
imations (notably that of homogeneity both in configuration
and velocity space). We now present results of numerical
simulations (in d ¼ 3) which test their validity. We focus
here on the crucial result above: the parametric dependence
of the two-body scattering rate due to soft scatterings in Eq.
(5), for the range � > ðd� 1Þ=2.

We perform molecular dynamics simulations using a
version of the publicly available gravity code GADGET2

[8]. We have modified the force routine in the tree-PM
version of the code to treat a generic power-law pair poten-
tial with a core. As in the original code we use a soft
repulsive core, with compact support: for r < � VðrÞ de-
creases continuously to a minimum at r � �=2 and then
increases back to a local maximum Vðr ¼ 0Þ ¼ 0. In what
follows the values of � quoted correspond to the separation
at which the force is still attractive but has dropped to
approximately 30% of its value in absence of smoothing.
We consider here the attractive case (i.e. g < 0). The simu-
lations are checked using simple convergence tests on the
numerical parameters, and their accuracy is monitored using
energy conservation. For the time steps used here it is
typically of order 0.1% over the whole run, orders of mag-
nitude smaller than the typical variation of the kinetic or
potential energy over the same time. As initial conditions
we take the N particles on the sites of a simple cubic lattice
of side L0 and ascribe random velocities uniformly distrib-
uted in an interval ½��;�� in each direction (i.e., ‘‘water-
bag’’ type initial conditions in phase space). The parameter
� is chosen so that initial virial ratio is unity, i.e., 2K=jUj ¼
�. We choose this initial condition because it would be
expected to be close to a QSS to which (collisionless)
relaxation should occur ‘‘gently.’’ The system is enclosed
in a cubic box of side L � 2L0 (and centered on the same
point as the initial cube of particles). Energy conserving
‘‘soft’’ reflecting boundary conditions are used in the dy-
namics, i.e., at each time step particles which have moved
outside the box have the appropriate components of their
velocity inverted. The results we report here required runs
lasting as long as two weeks on up to 16 processors.

Shown in Fig. 1 is the evolution of the potential energyU
as a function of time, for a pair potential with � ¼ 5=4 and
�=L ¼ 0:01, for the different values of N indicated. We

have defined �mf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL�þ2

0 =gN
q

, which, given that L0 �
R, is equivalent parametrically to the definition used above,
assuming the scaling in Eq. (6). The macroscopic behavior
monitored in this plot is clearly very consistent with what

has been anticipated, in line with the typical behavior ob-
served in self-gravitating systems and other systems with
long-range interactions studied in the literature: there is a
first phase of ‘‘violent’’ (collisionless) relaxation towards an
approximate equilibrium, the QSS, which then evolves itself
in a second phase on a time scale which clearly depends
on N. The first phase, on the other hand, should be
N independent: as N increases we see that the different
curves are increasingly well superimposed at early times.
Shown in Fig. 2 are, for the two cases � ¼ 5=4 and � ¼

3=2, our measurements of the relaxation rate �relax, as a
function of N (upper panel) at a chosen fixed �, and as a
function � (lower panel) at fixed chosen N. The estimate of
�relax is obtained simply from the slope of the potential
energy plotted as a function of time, in the region in each
case where this is well fit by a linear behavior, i.e., we take
�relax ¼ dðlnUÞ=dt at t ! 0. Each point corresponds to one
numerical simulation. Note that for these determinations
we consider thus only the evolution away from, but still
close to, the QSS. Further results on the longer time
evolution of these systems, and, in particular, the compati-
bility of the fully relaxed states with those predicted ana-
lytically for this case in [9] (and related numerical studies
in [10]) will be given elsewhere.
The upper panel of Fig. 2 includes a line showing the

scaling proportional to 1=N predicted by Eq. (5) at fixed
bmin ¼ �. The agreement is clearly very good. Further it is
simple to verify that the results are quantitatively very
coherent with the prediction: taking R � L0=2 � L=4, Eq.
(5) fit the normalizations of the plot with a prefactor of
order unity in both cases. While the degree of this con-
cordance—despite the many approximations which inevi-
tably limit the accuracy we can expect, and the fact that we
have dropped all numerical factors in our derivation—is
clearly just fortuitous, this quantitative coherence of the
results confirms their solidity.
The lower panel of Fig. 2 shows likewise excellent

agreement with the predictions above. On it are shown

FIG. 1. Temporal evolution of the total potential energy U
divided by its initial value Uð0Þ, for � ¼ 1:25 and a soft core
�=L ¼ 0:01, for the different N indicated.
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lines corresponding to the behavior of Eq. (5) at fixed N,
when we replace bmin by �. As discussed above, this
scaling is predicted to be valid in the regime bmin < �<
bmax. Below bmin we expect the rates to reach an asymp-
totic �-independent value of order those estimated in Eq.
(8). The behaviors in the plot are very coherent with these
predictions, for values of bmin which are in good agreement
with Eq. (7), taking again R � L=4. While we have not
predicted the value of bmax, the downward deviation (cor-
responding to a reduction in scattering rate) from the fit at
larger � occurs at a value very consistent in each case with
the measured mean interparticle distance.

We note that this last plot explains why we consider only
� up to� ¼ 3=2, and indeed why we have not tried to verify
more directly the scalings in Eq. (8) using simulations with
� ! 0. The reason is that, in order to measure the relaxation
rates, we need to access the regime �relax�mf � 1, i.e., we
need to have a reasonable separation between the times
scale of the collisionless dynamics (and formation of
QSS) and the relaxation time scale. At N ¼ 103 we see

that � ¼ 3=2 is already at this limit for the smallest �, and
the error bars on these points reflect the greater difficulty we
have in making the measurement in these cases. The only
remedy is to increase N, which, however, is prohibitively
expensive numerically, in particular, at small � where the
proper integration of the (few) hard collisions included
requires significant decrease in the time stepping.
Finally, a few remarks on the relation of these results to

some of the extensive recent literature on QSS (see [1] for
references). The determination of the N dependence of
QSS lifetimes has been much emphasized, both as a target
for phenomenological studies of toy models, and for theo-
retical studies of the problem. Our results show that such
lifetimes can be expected to depend, in general, not just on
N, but also on the parameters characterizing the short
distance properties of the potential. While for � < d� 1
a limit � ¼ 0 may be defined [and gives the scaling of
Eq. (8)], for �> d� 1 this is not possible and the scaling
of the relaxation rate will depend necessarily on how �
scales with N. It would be interesting to extend our nu-
merical simulations to explore the robustness of QSS nota-
bly to effects which may come into play in more physically
realistic settings: as shown by a recent study [11] of a toy
model, the introduction of stochasticity in the dynamics
may also destroy QSS. We emphasize that our results here
apply only to the particular (albeit broad) class of models
considered, and a priori not, e.g., to long-range spin mod-
els in which there is no equivalent of two-body collisions.
It remains an interesting open question to determine in a
broader such context the conditions for the existence of
QSS on the spatial dependence of the interaction.
We acknowledge many useful discussions with F.
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