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Stress relaxation in unlinked ring polymer melts poses an important challenge to our theoretical

understanding of entangled polymer dynamics. Recent experiments on entangled unlinked ring melts

show power-law stress relaxation with no hint of a rubbery plateau, usually the hallmark of entangled

polymers. Here we present a theory for stress relaxation in rings analogous to the successful approach for

star polymers. We augment our theory with mesoscale Monte Carlo dynamics simulations of equivalent

‘‘lattice animal’’ configurations. We find a stress relaxation function GðtÞ � t�� with � � 1=2 consistent

with experiment, emerging ultimately from the disparate relaxation times of more- and less-central

portions of ring conformations.
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Over the past three decades, the concept of the tube as a
single-chain approximation to uncrossability constraints
[1,2], coupled with mechanisms of reptation, contour-
length fluctuations, and arm retraction for chain segments
to explore new paths, have led to quantitatively accurate
theories of stress relaxation in linear and branched poly-
mers. By coming to grips with the progression of experi-
mental systems from entangled melts of monodisperse
linear chains [3,4], to polydisperse linear chains, star poly-
mers [5], star-linear blends [6], and more complex
branched architectures [7], we greatly increased our under-
standing of how entangled polymers move.

In the context of that success, entangled melts of un-
linked ring polymers present a vexing challenge, testing
the depth of our understanding of entanglement. How do
such ring polymers move, and even what conformations
they adopt, have been longstanding theoretical challenges.
These systems present formidable experimental challenges
as well, because heroic measures are required to make
reliably closed rings, with synthesis carried out in very
dilute solution to avoid links. Such materials are not likely
ever to be commercially relevant.

However, recent careful measurements of dynamical
response Gð!Þ have been performed on polystyrene (PS)
rings of molecular weight 198 kg=mol, corresponding to
about 15 times the entanglement mass Me [8]. The sample
shows a power-law behavior with G0ð!Þ and G00ð!Þ both
scaling as !1=2, corresponding to a power-law stress re-

laxation function GðtÞ scaling as t�1=2.
The frequency-dependent elastic modulus G0ð!Þ

showed no hint of a plateau, which ordinarily is a hallmark
of well-entangled chains for both linear and branched
polymers, because of the near-absence of stress relaxation
mechanisms over a broad frequency range, between the
time scale �e at which chain segments first explore the
local tube, and the much longer relaxation time scales for
reptation or arm retraction.

Multiple attempts have been made to construct a theory
for stress relaxation in unlinked rings [9,10]. Even the
static conformations of a melt of rings are not completely
resolved [11]. It is relatively unambiguous that a single
unlinked ring in network of obstacles (e.g., a lightly cross-
linked gel, without dangling chain ends) should adopt
‘‘lattice animal’’ configurations, in which each ‘‘bond’’ in
the animal represents a doubled polymer strand, of length
the tube diameter a, and total mass 2Ne. (See Fig. 1.) The
ultimate scaling of Rg for large molecular weight unlinked

rings in a melt is most likely compact collapsed chains;
however, there exists a broad crossover region where con-
formations something like lattice animals are observed in
molecular dynamics simulation. In this work we assume
rings in a melt adopt lattice animal configurations (dis-
cussed further, below).
The most recent theoretical account of stress relaxation

in rings gives exponents in reasonable agreement with
experiment [8,10]. However, the treatment is unsatisfying
in that the argument is of a completely different form than
those used successfully to describe stress relaxation in

FIG. 1 (color online). A ring polymer in a network of fixed
obstacles, abstracted as a lattice animal. Ring moves by retract-
ing a loop (dashed) and extending it nearby (dashed), changing
centrality of neighboring bond (thick).
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linear and branched polymers. The object of this Letter is
to describe stress relaxation in a melt of unlinked rings in
the same manner as for linear and branched polymers.

Stress relaxation in entangled polymers, whether linear
or branched, has been described in terms of the survival
probability for tube segments [12]. The linear viscoelastic
response is determined by the time-dependent stress re-
laxation GðtÞ following a small step strain. At time t after a
step strain, a fraction c ðtÞ of tube segments survive,
some having been vacated by whatever random motions
of the chain its architecture permits. For a polymer in a
network of fixed obstacles, c ðtÞ is also the fraction of
the initial stress that survives at time t. For an entan-
gled melt of identical polymers, the dynamic dilution
approximation [13] (equivalent to double reptation for
entangled linear polymers) [14,15] posits that the stress
relaxation behaves as a progressively diluted network,
which leads to reasonable quantitative predictions for
stress relaxation.

For a linear polymer, c ðtÞ is determined mainly by
reptation, with segments in the center of the chain surviv-
ing longer because the chain must reptate farther to vacate
these segments. For star polymers, which cannot reptate,
c ðtÞ is controlled by arm retraction, with segments far
from the free end surviving much longer because deep
retractions face an entropic barrier. We seek to describe
the dynamics of ring polymers in terms of c ðtÞ as well.

Note that the local motion of ring polymers in a network
of obstacles is again very different from either linear or star
polymers. The ring polymer, represented as a lattice ani-
mal, consists of a treelike structure of nodes connected by
bonds. The fundamental random motions available to ring
polymers are events in which a ‘‘leaf’’ bond (bond termi-
nating in a leaf node) retracts from one portion of tube, and
reemerges from a neighboring node. (See Fig. 1). By a
succession of such moves, eventually a lattice animal can
completely renew its configuration.

To analyze the survival probability for bonds in a lattice
animal, consider a particular given bond (e.g., the thick red
bond in Fig. 1). Every bond divides the animal into left and
right subtrees, of mass m and N �m, where N is the total
mass (number of nodes) of the animal. For this bond to be
vacated by the polymer, the smaller of the two subtrees
must completely ‘‘evaporate’’ across the given bond, into
the larger subtree on the other side of the bond. This
evaporation takes place as leaves from the smaller subtree
diffuse randomly across the given bond.

This motivates the definition of ‘‘centrality’’ c of a bond,
defined as c ¼ Minðm;N �mÞ. If c is small, we expect
relaxation to be rapid. We can find the probability distri-
bution PðcÞ analytically for randomly constructed lattice
animals, representing the animals on a Bethe lattice for
simplicity (to preclude ‘‘collisions’’ between segments).
From simple counting arguments [16], the number of
possible subtrees sðmÞ of m nodes is

sðmÞ ¼ ½ðf� 1Þm�!
m!½ðf� 2Þmþ 1�! ; (1)

where f is the coordination number of the lattice.
Then, the probability PðcÞ of a bond having centrality

c is equal to the probability that the left subtree has c nodes
and the right subtree N � c nodes:

PðcÞ ¼ sðcÞsðN� cÞP
sðcÞsðN� cÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf� 1Þ

8�ðf� 2Þ

s �
N

cðN� cÞ
�
3=2

: (2)

Most bonds are of low centrality, and relax quickly.
To find the typical relaxation time �ðcÞ for bonds of

centrality c, we analyze the dynamics of a given bond,
following the (left) subtree mass m as a ‘‘reaction coordi-
nate.’’ Roughly speaking, m diffuses randomly as leaves
from the two subtrees diffuse back and forth across the
given bond. When m reaches either zero or N, the bond is
vacated and its stress contribution relaxed. The situation is
similar to a randomwalk on a 1dmesa, in which the walker
(a sunstruck tourist?) meets his demise if he reaches either
end of the mesa.
Extending the metaphor, if we put up guardrails at the

ends of the mesa (to protect the tourists), the equilibrium
distribution of the random walkers must reproduce PðcÞ.
This implies the random walk is carried out in an effective
entropic potential, �UðcÞ ¼ � logPðcÞ. The mesa, rather
than being completely flat, is logarithmically sloping near
the ends (more like Ayers’ Rock than Devil’s Tower). This
entropic potential is strongly analogous to that governing
arm retraction, except that in the present case, the potential
actually favors relaxation, as it biases bonds towards low,
quickly-relaxing centrality values.
It turns out that the stochastic dynamics of the centrality

of a given bond is not quite simple diffusion. We have
carried out Monte Carlo simulations of the dynamics of a
lattice animal on a Bethe lattice, with moves corresponding
to elementary hops of leaf bonds. The centrality is ob-
served to undergo non-Fickian diffusion for short to inter-

mediate displacements, with the variance growing as t3=4,
regardless of the initial centrality. (See Fig. 2.)
To investigate how the centrality diffuses, we gathered

statistics on the rate Rð�t; kÞ of ‘‘first crossings’’ at time
delay �t for leaves initially k generations removed from
one end of a given high-centrality bond B. (‘‘k generations
removed’’ means ‘‘k steps away along the shortest path’’.)
These results were obtained by ‘‘watching the movie back-
wards’’; that is, by recording the time a particular bond-as-
leaf B0 hopped from the right side of the given bond B to
the left (say), and noting how many generations removed
the bond B0 was from B while still in the left subtree, at
later times.
By summing with respect to k, we obtain Rð�tÞ, the rate

of first crossings of all leaf bonds over a given high-
centrality bond. Summing Rð�tÞ with respect to �t
gives Cð�tÞ, the total number of first crossings over a given
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high-centrality bond up to time delay �t. Rð�tÞ is found to
be a power law, �t0:75–0:8. This is consistent with non-
Fickian diffusion of centrality, because mass that is able to
arrive at the given bond within time delay �t will be found
randomly on either side of the bond; thus h�c2i should
scale the same way as Rð�tÞ.

We can understand the behavior more microscopically
by finding out how much mass MðkÞ there is within
k generations of a given high-centrality bond. We then
argue that the variance in centrality grows with time as
the accessible mass Mðkð�ÞÞ, in which �ðkÞ � k2 is the
typical diffusive arrival time for random walkers to tra-
verse a generational distance of order k.

For this purpose, static Monte Carlo studies were per-
formed in which lattice animals were randomly con-
structed [by means equivalent to the counting arguments
leading to PðmÞ], and the massMðkÞ counted starting from
high-centrality bonds. The results are well described by
MðkÞ � ka with a ranging from 1.5 to 1.7 for lattice
animals of 100–1600 bonds. (See Fig. 3.) (We do
not have an analytical argument for this exponent, which

evidently has not quite reached its asymptotic value even
for animals as large as 1600 bonds.)
By the arguments above, we then expect h�c2i to grow

as ta=2, Thus for lattice animals of 50–200 bonds for which
Monte Carlo dynamical simulations were performed, we
expect h�c2i � tb with b ¼ 0:75–0:8, as indeed we ob-
served. The non-Fickian behavior for centrality diffusion
then results from the expanding geometry of the lattice
animal in the vicinity of high-centrality bonds, which
controls the amount of accessible mass that can diffuse
across a given bond. (Because a large lattice animal is self-
similar, a scale-invariant power law is expected.)
Corresponding to this power-law behavior, we expect

the maximum relaxation time �ðNÞ to scale as the time
required for the centrality to diffuse a ‘‘distance’’ of order

N, which implies �ðNÞ � N2=b�8=3. This argument is con-
sistent with our Monte Carlo results for the longest relaxa-
tion times as a function of lattice animal size.
Using the ingredients of a known entropic potentialUðcÞ

and a known power-law short-time diffusive behavior for
centrality, we can compute the mean first-passage time �ðcÞ
for a bond of centrality c to relax, by applying the same
methods we used for arm retraction in star polymers. To
make this work, we temporarily redefine time as t0 ¼ tb, so
that centrality diffusion looks Fickian. Then we can com-
pute the ‘‘mean first passage �0’’, by standard methods,
with the result

D ��0ðcÞ ¼ Iþ
I

Z c

0
dc0e�Uðc0Þ Z c0

0
dc00eUðc00Þ þ I�

I

�
Z N

c
dc0e�Uðc0Þ Z N

c0
dc00eUðc00Þ; (3)

with I� ¼ R
c
0 dc

0eUðc0Þ, Iþ ¼ R
N
c dc0eUðc0Þ, and I ¼ I� þ

Iþ. Finally, we invert the relationship ��0 ¼ ��b, to obtain
predictions for the desired mean first-passage time �ðcÞ.
Results are shown in Fig. 4 as the solid curve.
We can compare the above prediction to Monte Carlo

simulation results for the average lifetime of bonds of
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FIG. 3 (color online). Average total mass within k generations
of a given high-centrality bond, for lattice animals with number
of bonds N ¼ 100 (lowest data), 200, 400, 800, 1600 (highest
data). Corresponding slopes are 1.5, 1.55, 1.6, 1.65, 1.7.
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FIG. 4 (color online). Mean bond lifetime �ðcÞ vs centrality c,
for animals with number of bonds N ¼ 50 (circles), 100
(squares), 200 (stars), compared to theory (curve).
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FIG. 2 (color online). Mean-square centrality displacement
versus time, for starting centrality values c ¼ 20; 30; . . . ; 90 on
a lattice animal of 200 bonds. Line is slope 0.75.
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centrality c. These results were again obtained by time-
reversing the simulation trajectory, recording the timewhen
a given leaf bond B first becomes ‘‘buried’’ by some other
bond, thus increasing its centrality, and noting the centrality
of B at later times (interpreted as ‘‘earlier’’ times in the
time-reversed trajectory). The results are shown in a master
plot in Fig. 4 for animals of total mass 50, 100, and 200
bonds, inwhich lifetimes have been scaled by themaximum
lifetime, and centralities by the maximum centrality.

To this point, our discussion has treated the relaxation of
a single ring in a fixed network of entanglements. Whereas,
in a melt of unlinked rings, the entanglement network is
itself relaxing by the same mechanisms that relax the
conformations of a given ring. Melts of linear and branched
polymers were also first treated by considering a single
chain in a fixed network. For monodisperse linear poly-
mers, which relax predominately by reptation, on approxi-
mately a single time scale, corrections to the fixed network
picture are modest. For polydisperse linear melts or star
polymers, both of which have a broad distribution of
relaxation times, the effect is more severe.

Fortunately, a simple approach has been developed to
describe the effects of a relaxing entanglement network,
known as dynamic dilution (for branched polymers) or
double reptation (for polydisperse linear chains). The re-
sidual stress a time t after a step strain is modeled as
supported by a diluted entanglement network, diluted by
removal of faster-relaxing material. The general result is

GðtÞ ¼ �
Z

d�

�
@G

@�

��
@�

@�

�
e�t=�; (4)

in which �ð�Þ is the entanglement fraction or fraction of
as-yet unrelaxed material a time � after a step strain.
Dilution of the transient network modulus is represented
by taking Gð�Þ ¼ G0�

�, with � the ‘‘dilution exponent’’,
given by various arguments as between 2 and 7/3 [17]. For

ring polymers, we express � as �ðcÞ ¼ R
N=2
c dc0Pðc0Þ.

With �ðcÞ approximated as a power law c��8=3 up to the
maximum centrality, we can extract from Eq. (4) a power-

law dependence for GðtÞ of t��=ð2�Þ; carrying this result
through to Gð!Þ results in G0ð!Þ and G00ð!Þ scaling as

!�=ð2�Þ�7=16, consistent with recent experiments. Note that
these rings are only about 15Me, which means about 7–8
bonds in the lattice animal, far from asymptotically large.
However, the general result of power-law relaxation from
the present theory resolves how an entangled system of
ring polymers can nonetheless show no rubbery plateau,
as a consequence of the power-law distribution of relaxa-
tion times �ðcÞ and power-law distribution of centrality
values PðcÞ.

In conclusion, we have presented a theory of stress
relaxation in melts of unlinked polymers that is strongly
analogous to earlier successful descriptions of stress
relaxation in linear and branched polymers. Our theory
relies on local random motion of small unentangled loops,

resulting in power-law diffusion of the centrality c of
bonds in an entropic potential. From this, we compute
the mean survival time �ðcÞ using first-passage time tech-
niques, just as in the theory of stress relaxation in star
polymers. We use dynamic dilution to connect predictions
for a single unlinked ring in a network of obstacles to the
behavior of a melt of unlinked rings. We find power-law
stress relaxation consistent with recent experiments.
(Exponent values are insensitive to coordination number
f, but would likely change if the Bethe lattice approxima-
tion were relaxed.)
The present theory assumes that configurations of a melt

of unlinked ring polymers are similar to those of a single
ring in a network of obstacles. In fact, there are reasons to
believe that a melt of sufficiently large unlinked rings
would adopt collapsed conformations, because collapse is
the most efficient way to minimize the entropy penalty in
avoiding linked conformations with neighboring loops.
But even for very large loops, there would be a surface
layer of protrusions analogous to lattice animals, contrib-
uting to the stress relaxation. Analyzing the dynamics in
this limit we leave to future work.
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