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We study Aharonov-Bohm (AB) conductance oscillations arising from the surface states of a

topological insulator nanowire, when a magnetic field is applied along its length. With strong surface

disorder, these oscillations are predicted to have a component with anomalous period �0 ¼ hc=e, twice

the conventional period. The conductance maxima are achieved at odd multiples of 12�0, implying that a �

AB phase for electrons strengthens the metallic nature of surface states. This effect is special to

topological insulators, and serves as a defining transport property. A key ingredient, the surface curvature

induced Berry phase, is emphasized here. We discuss similarities and differences from recent experiments

on Bi2Se3 nanoribbons, and optimal conditions for observing this effect.
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There has been much recent interest in topological in-
sulators (TIs), three-dimensional insulators with metallic
surface states protected by time reversal (T ) invariance
(see [1] for reviews). Surface sensitive experiments such as
angle-resolved photoemission spectroscopy (ARPES) and
STM [1], have confirmed the existence of this exotic
surface metal, which, in its simplest form, takes a single
Dirac dispersion. However, so far there have been no
transport experiments verifying the topological nature of
the surface states. Besides the fact that bulk impurity bands
may contribute significantly to conductivity, the key trans-
port property is the absence of localization whenT invari-
ance is present. This has been hard to convert into a clear-
cut experiment. Here we discuss a topological feature of TI
surface states that leads to a transport signature, which we
believe is experimentally accessible. The Aharonov-Bohm
effect will play a central role. Also, the Berry phase for
electrons propagating on the curved surface of a topologi-
cal insulator will be important. We model this as a Dirac
theory in curved space, drawing on ideas developed to
study fermions in curved space-time [2].

Consider a wire of topological insulator, with magnetic
flux applied along its length. The surface states see flux and
can be considered a collection of one-dimensional (1D)
modes, that come in pairs moving up and down the wire.
Throughout we assume low temperatures so the thermal
dephasing length exceeds the sample dimensions. Time
reversal symmetry is present at zero flux, and also, approxi-
mately for the surface states, when the surface encloses an
integer multiple of 1

2�0 ( ¼ hc=2e) flux quanta. However,

there is an important difference between even and odd
multiples of 1

2�0 flux. Odd multiples of 1
2�0 flux lead to

a � Aharonov-Bohm phase for surface electrons, resulting
in an odd number of pairs of modes [3,4]. This can be seen
from a simple model of TI surface states: a single Dirac
cone. These Dirac excitations are sensitive to surface
geometry, since the physical spin is locked to surface

orientation. Hence they behave like Dirac particles in a
curved two-dimensional space. There is no analog of this
for graphene rolled up into nanotubes, since there the Dirac
matrices act on an internal pseudospin space. Hence surface
curvature introduces an additional Berry’s phase of � on
circling the cylindrical surface of a topological insulator, as
shown in [3], and below. This 1D state is topologically
protected and cannot be localized with T symmetry [5].
In contrast, even multiples of 1

2�0 flux lead to an even

number of modes which are not protected. In this Letter
we build on this observation a sharp transport signature
in the presence of strong disorder. For a wire of fixed length
with sufficiently strong disorder, even flux leads to a fully
localized state while odd flux leads to a metallic state
whose conductance ideally approaches e2=h. We show
this can survive despite time reversal symmetry breaking
from the magnetic field, which is present at all fluxes.
Note, this oscillatory dependence has a flux �0 ¼ hc=e

period, in contrast to Aharonov-Altshuler-Spivak (AAS)
oscillations which have period 1

2�0 ¼ hc=2e. There has

been much discussion on the question of �0 vs 1
2�0

oscillations, in mesoscopic rings [6,7] and cylinders
[8,9]. For rings, both periods are observed, the first period
is attributed to AB interference of single electrons, and the
second to AAS oscillation. The period doubling of the
latter arises from weak localization (or antilocalization)
effects which involve pairs of time reversed paths.
However, in metallic cylinders, only the 1

2�0 period has

been experimentally reported [8]. The �0 period has been
theoretically predicted [7,9], but occurs with random
phase, i.e., can peak at either even or odd multiples of
1
2�0. Therefore an ensemble average tends to wash out this

effect, which, according to Refs. [6,7], is why the 1
2�0

effect is more commonly observed.
In contrast, the period �0 ¼ hc=e oscillation described

here is unique in having maxima always at odd-integer
multiples of 1

2�0, and only occurs in strong TIs.
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A recent experiment on topological insulator Bi2Se3
nanowires has indeed reported such an anomalous hc=e
flux period [10]. However, there is a crucial difference
from the effect described above—the conductivity is found
to be minimum at the locations of the predicted maxima.
Hence Ref. [10] must be observing different physics, per-
haps analogous to the �0 oscillation of [6]. We point out
one possible mechanism for this at weak disorder. The
regime described in this Letter is accessed by going to
strong disorder on the surface. The current experiments
demonstrate coherent quantum transport from surface
states, which is a hopeful sign for accessing the physics
of this Letter in future experiments with strong disorder.

We first describe the physical ingredients that give rise to
this anomalous AB effect, in clean systems. Subsequently,
we report the result of numerical experiments on disor-
dered cylinders of topological insulators, realized in a
three-dimensional lattice model.

Analytic surface Dirac theory.—Consider generalizing
the Dirac Hamiltonian for a flat surface perpendicular to
the z direction H ¼ �ivF@ðpx�x þ py�yÞ to the case

when the surface is curved. We utilize the fact that the
surface is embedded in three-dimensional space, so
rðx1; x2Þ is the three-vector defining the surface location,
as the surface coordinates xi (i ¼ 1, 2) are varied. Then,
ei ¼ @r=@xi are tangent vectors. Define conjugate tangent
vectors ei, via ei � ej ¼ �ij, the Kronecker delta function.

Naively, one might guess that the Dirac equation on this
curved surface is just H1 ¼ �ivF@ð�1@1 þ �2@2Þ, where
@i ¼ @xi and �i ¼ ei � � are the Pauli matrices along
the tangent vectors. However, the actual form for a Dirac
equation in curved space is HD ¼ �i@vFð�1D1 þ �2D2Þ,
where Di is the covariant derivative along a pair of coor-
dinates xi, defined as Di ¼ @i þ �i, where �i is the spin
connection which, in our case, is given in terms of [11]
� ¼ e3 � � (the Pauli matrix along the surface normal
e3 ¼ e1 � e2=je1 � e2j) as �i ¼ � 1

2�@i�

Now, let us specialize to a cylindrical surface such that
x1 ¼ z along the cylinder axis and x2 ¼ R�, where R is the
radius and � is the angle around the cylinder. Using � ¼
�ðcos��x þ sin��yÞ one can derive �i from the relation

above to obtain HD ¼ �i@vFð�z@z þ ��@�=Rþ �=2RÞ,
where �� ¼ ðcos��y � sin��xÞ. The unitary transforma-

tion U ¼ ei�z�=2 transforms this into the canonical form
H0

D ¼ �i@vFð�z@z þ �y@�=RÞ. However, since the uni-

tary transformation changes sign � ! �þ 2�, the wave
functions for the new Hamiltonian satisfy antiperiodic
boundary conditions on circling the cylinder. Therefore,
only angular momenta @ðmþ 1=2Þ are allowed, wherem is
integer. Hence, the zero angular momentum is absent, and
there are an even number of one-dimensional modes pairs.
Now threading an additional � flux, the periodic boundary
conditions are restored, and the parity of the mode pairs is
reversed; see [11] for a more general argument. Although
the cylinder has vanishing Gaussian curvature, a nonzero
spin connection leads to the Berry’s phase of �. This

topological property is also ultimately responsible for
metallic dislocation lines [3,12].
Microscopic model.—We now demonstrate this effect

for a lattice model of a strong topological insulator (which
is more general than the Dirac approximation). We use the
model of Fu-Kane-Mele [13] on the diamond lattice.
Parameters are chosen to give a strong topological insula-
tor [11] with bulk gap � ¼ 2t. A long cuboid with cross
section L� L is taken along the weak index direction of
this model, and surface states are labeled by momenta kz
along the long axis. A uniform magnetic flux � is intro-
duced uniformly through the cross section, denoted in units
of the flux quantum: ’ ¼ 2��=�0. The surface spectrum
is shown in Fig. 1. All modes are doubly degenerate except
the linearly dispersing mode in 1(d). Thus, even for small
sizes L ¼ 10, the even-odd mode effect and the gap closing
at flux ’ ¼ � is apparent. While the breaking of time
reversal symmetry at this flux implies there is always a
gap, this is seen to be very small, and the curves appear 2�
periodic, so time reversal is approximately a good symme-
try at these flux values. Thus, even in the clean limit,
metallic behavior appears at odd multiples of � flux, for a
carefully tuned chemical potential near the node. However,

FIG. 1 (color online). (a) proposed geometry, with (weak)
magnetic field applied along z with flux ’ ¼ 2��=�0.
(b) Quantization of transverse momenta k� for a cylinder, as a
function of applied flux. The Fermi sea is shaded. For ’ ¼ 0, an
even number of 1D mode pairs occurs; but with ’ ¼ � flux, an
odd number of pairs is expected. Numerical demonstration in a
microscopic model: spectrum of a cuboid of clean topological
insulator, with cross section 10� 10 unit cells (geometry shown
in inset), as a function of momentum kz along its length.
(c) Spectrum for ’ ¼ 0, each band shown is doubly degenerate.
(d) For flux ’ ¼ �, all modes except the linear one are doubly
degenerate; hence an odd number of 1D mode pairs is present.
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on raising the Fermi energy, the flux strength with the larger
number of modes oscillates between flux zero and �, the
former is reminiscent of the experimentally observed AB
oscillations [10]. A robust response, however, is exposed by
the presence of strong disorder, which we discuss next.

Disordered system.—We now consider adding disorder
only on the surfaces of the model above, via a random on-
site potential Vini, (T invariant disorder), where ni is the
charge density on site, and Vi a random variable picked
from a box distribution [�W, W]. We calculate the
Greens function for a system composed of N layers in
the z direction, and transverse size L� L, at energy E:
GNðr; r0;EÞ. The position and spin coordinates are lumped
into r. The transport properties of the surface states are
characterized by extracting the localization length of the
system in the quasi-one-dimensional limit. The technical
simplification for localization length � is that one only
needs the Greens function between the first and last layers
of the system, as the system length is increased. Denote by

the matrix GðNþ1Þ
1;Nþ1, the Greens function between the first

and last layers of a system with N þ 1 layers, where
the matrix indices refer to sites in the layer, and the

energy label is suppressed. The localization length: ��1 ¼
limN!1 �2

N logðjGðNþ1Þ
1;Nþ1j2Þ, which is self-averaging, is ex-

tracted by a linear fit [an example is shown in Fig. 2(a)
inset] to the logarithm of the Greens function. The latter
can be efficiently calculated [11].

Strong disorder.—Results are shown in Fig. 2, where
parameters were chosen to obtain a bulk gap � ¼ 2t, the
hopping strength. System sizes with perimeter 4L, with
L ¼ 6, 9, 12, 15 were studied and the quasi-1D localiza-
tion length �’ was extracted as a function of flux. We

consider strong disorder, to obtain a localization length
short enough to be measured: W ¼ 2� for the first two
andW ¼ 4� for the last two sizes. The chemical potential
was taken to be near the middle of the gap (E ¼ 0), where
the Dirac node appears in the clean limit. However, for
these strong disorder strengths, results are nearly indepen-
dent of chemical potential location inside the bulk gap. As
seen in Figs. 2(a) and 2(b) a clear maximum in localization
length is seen near ’ ¼ �. Note, the location of the maxi-
mum near ’ ¼ � and the ’ ! 2�� ’ is consistent with
time reversal being an approximate symmetry even for the
smallest sizes. However at ’ ¼ �, the localization length
is finite, so time reversal symmetry breaking enters here.
Clearly, for larger widths the symmetry is more accurate,
given the weaker fields prevailing on the surface states.
With the definition g’ ¼ �’=4L, this quantity ranges from

g0 ¼ 1:6 to g� ¼ 6:3, as the flux is varied, for L ¼ 15.
Hence, for these parameters, wires with aspect ratios
roughly in this range should exhibit conductance oscilla-
tions with a maximum at flux �, as shown below.

Weak disorder.—In Fig. 2(d), we plot a system with
weak disorder, where W ¼ 0:5�, and the chemical poten-
tial is tuned to E ¼ 0:15�, where there is a large density of
states. The localization lengths are now significantly longer

(note the log scale for �), and a prominent antilocalization
feature is present near flux ’ ¼ �=2, 3�=2. The latter will
contribute to an AAS hc=2e period in conductance oscil-
lations. Since g0 ¼ 125, at smaller aspect ratios the system
is unaware that there is an even longer localization length
at � flux, and the most visible feature is likely to be the
hc=2e AAS oscillations. This illustrates the important role
of strong disorder in observing the effect of interest.
Conductance.—Finally, in Fig. 2(d), we present the

conductance of a wire with length l ¼ 100, cross section
9� 9, and strong disorder strength W ¼ 2�. The conduc-
tance is extracted from the Greens function using the Kubo

formula, � ¼ e2@
�l2

Tr½vzImGvzImG� with vz ¼ i
@
½H; z�.

The effect of leads is modeled by sandwiching the disor-
dered system between 4� 103 layers of clean wire on
either side. We take � ¼ 0:15�, to obtain a finite density
of states in the leads. The localization length for these
parameters is close to that in Fig. 2(b), so l is intermediate
between the localization lengths obtained there. A small
imaginary part 	� 5� 10�4� is inserted in the energy to
obtain finite results; results are insensitive to its precise
value. Each data point is obtained by averaging log of
conductance over 500 samples. Clearly, a conductance
maximum at flux � is observed. Note, however, the
hc=2e oscillations are more prominent here than in

FIG. 2 (color online). (a),(b),(c) Localization length � in
the quasi-1D geometry, for different widths L and disorder
strengths W (in units of the bulk gap �). Error bars are smaller
than the symbol size. (a) and (b) Strong disorder: variation has
flux-period hc=e and � is maximum at flux ’ ¼ �. Inset:
Example of the exponential decay of the Green’s function used
to determine �. (c) Weak disorder: the hc=2e oscillation period
is also apparent and localization lengths are large (note log scale
here). (d) Conductance oscillation: measure of conductance for a
wire of length l ¼ 100 and width L ¼ 9, with strong disorder
W ¼ 2�. Maximum conductance occurs at � flux.
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the localization length plots, and the overall contrast in
conductance is of order 0:1e2=h. This will increase for
longer wires and wider cross sections, where the effects
ofT breaking at� flux are less important, and localization
of states away from this flux will set in. While a more
extensive conductance analysis is left to the future, these
results corroborate the basic picture.

Scaling analysis.—How do these results scale to larger
system sizes, as in the experiments [10]? We examine
this first at zero and then at � flux. (i) In the truly two-
dimensional limit a metallic (symplectic metal) phase is
expected, hence g0ðL ! 1Þ ! 1, this growth is slow. The
scaling to larger widths is captured by the beta function
�ðgÞ ¼ d logg=d logL, similar to the well known beta
function for conductance. This function is known for
spin-orbit metals in 2D [14]. For large g, the topological
insulator surface displays identical behavior [15];
i.e., �ðgÞ � 0:64=g. We estimate this to be reasonably
accurate for g � 2 for TI surfaces; integrating which
yields: �0ð
LÞ � �0ðLÞ þ 2:56L log
. (ii) The localization
length at � flux diverges more rapidly, since the effects of
T breaking are weaker at larger widths. It is readily
seen that this scales asymptotically as ��ðLÞ � L4 (since
T breaking strength scales as �� 1=L2, and the localiza-
tion length for weak � scales as �� 1=�2). Thus the ratio
��=�0 � L3= logL diverges with increasing cross section,
implying a wide range of intermediate wire lengths �0 �
lz � �� where the zero flux state appears localized, but the
� flux state is extended.

Experimental realization.—In Ref. [10], Bi2Se3 nano-
wires with circumference 350 nm and length 2 �m were
studied.We simulated models roughly 10 times narrower in
width. An important question we address is the effect of
finiteT breaking induced by the field. This ultimately leads
to localization even at � flux. However, our numerical
experiments already demonstrate very long localization
lengths at this flux,while the zero flux state iswell localized.
The larger experimental cross sections will further enhance
this contrast, as discussed above. We checked that the
Zeeman splitting induced by the field in the numerical
simulations does not affect results qualitatively, if their
energy scale Ez 	 0:025�. This should be readily satisfied
in experiments. Note, we have ignored electron interac-
tions, which is an interesting subject for future research.
However, given the large dielectric constants of these ma-
terials (e.g., 	� 100 in Bi2Te3, [16]), this is a reasonable
first approximation. For the disorder strengths assumed
here, wires with the experimental dimensions would clearly
exhibit the anomalous AB effect. Thus, the main require-
ment for a given length of nanowire appears to be strong
disorder, so one is in the localized regime at zero flux. We
believe this is not met in the present experiments [10], but
could be achieved via greater surface disorder, or tuning the
chemical potential to an energywith smaller carrier density.

Conclusions.—We described a topological property of
the surface states of TIs. An Aharonov-Bohm phase of
� strengthens the metallic nature of surface states, leading

to a clear-cut transport signature. Our work is summarized
in Fig. 2(d), the result of a numerical experiment on a
‘‘nanowire’’ of TI, which shows a conductivity maximum
at� flux. The conductance is slightly smaller than the ideal
e2=h value due to weakT breaking. The key requirements
for observing this effect are quasi-one-dimensionality and
strong disorder, which we believe are achievable given
current experimental capabilities.
We acknowledge insightful discussions with H. Mathur,

D. Carpentier, J. Moore, and G. Paulin, and DOE Grant
No. DE-AC02-05CH11231 for support. In [17], broadly
similar results are obtained using a 2D Dirac treatment,
although, in contrast to our 3D model calculation, surface
curvature Berry phase and finite T breaking at � flux are
not included in that approximation.
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