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When a stress is applied on a metallic glass it deforms following Hook’s law. Therefore it may appear

obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density

function analysis we show that only about 3
4 in volume fraction of metallic glasses deforms elastically,

whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance.

We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such

as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but

this result shows that it is as much as a quarter.
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Bulk metallic glasses are promising as structural
material because of their extremely high strength [1,2].
Therefore it is important to understand the mechanism
of deformation, whereas we are far from achieving this
goal. In this Letter we show that even the elastic properties
of metallic glasses are deeply misunderstood. Macro-
scopically metallic glasses appear to deform elastically,
but at the atomic level elastic response is highly inhomo-
geneous, reflecting the intrinsic structural heterogeneity.
For instance local atomic displacements are not collinear
(nonaffine), and displacements are different from atom to
atom [3]. Furthermore metallic glasses are viscoelastic, as
other glasses [4–6], and a significant portion of the appar-
ently elastic response could be due to anelasticity accord-
ing to a simulation [7]. In this article we show that a
significant fraction (as much as about a quarter) of the
apparently elastic response of a metallic glass is indeed
anelastic, through the analysis of x-ray diffraction results.

The lattice strains in crystalline materials can be mea-
sured directly by diffraction experiments, for instance,
using x rays, electrons or neutrons. In glasses, which do
not have periodicity in the atomic structure, it is not so
obvious if the same can be done or not. Nevertheless, it has
been claimed [8] that the local strain in metallic glasses can
be measured using diffraction, by tracing shifts in the first
peak in the structure function, SðQÞ where Q ¼ 4� sin�=�
is the diffraction vector, � diffraction angle and � the
wavelength of the probe, or the oscillations in the atomic
pair-density function (PDF), which can be obtained by
Fourier-transforming SðQÞ

gðrÞ ¼ 1þ 1

2�2r�0

Z
½SðQÞ � 1� sinQrQdQ (1)

where �0 is the number density of atoms, with Q either
parallel or perpendicular to the stress axis.

However, this equation is valid only when the system is
isotropic [9]. For anisotropic bodies we have to expand the
structure factor as well as PDF by the spherical harmonics
Ym
‘ ðxÞ [10],
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which are connected through the spherical Bessel trans-
formation,

gm‘ ðrÞ ¼
ðiÞ‘

2�2�0

Z
Sm‘ ðQÞJ‘ðQrÞQ2dQ; (3)

where J‘ðxÞ is the spherical Bessel function. Note that only
for the isotropic component (‘ ¼ 0), J0ðxÞ ¼ sinx=x and
Eq. (1) is recovered. For axial symmetry the terms with
‘ ¼ 2 and m ¼ 0 have to be evaluated. Further details are
given in Ref [11].
We carried out the x-ray diffraction measurements at the

1-ID/XOR beam line of the Advanced Photon Source,
Argonne National Laboratory. The incident energy was

tuned to 120 keV (� ¼ 0:10332 �A). The beam size was
set to 0:2 mm� 0:2 mm. The MAR345 area detector,
placed 40 cm behind the sample, was used in collecting
diffracted x rays. As a sample we used Vit-105 metallic
glasses with the composition of Zr52:5Cu17:9Ni14:6Al10Ti5.
Samples were prepared by a melt casting into 1.5 mm thick
plates. The dog-bone shapes, with the central part being
9.6 mm long, were cut using electric discharge machining
(EDM) . The samples were polished to the final thickness
of 0.67 mm and the width of 2 mm. The sample was placed
in a tensile grip in a MTS load frame Model 858. Sample
grips were encircled in an infrared heater with a front
opening of �30 degrees. The design of the heater permit-
ted unobstructed scattering from the sample. The external
stress was varied from 0 to 1.2 GPa with a 0.2 step. After
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reaching 1.2 GPa the temperature was increased to 300 �C
and held for 30 min to induce creep deformation. After
30 min the sample reached the steady state rate. Then the
sample was cooled and after reaching room temperature
the external load was removed. The elongation after
reaching room temperature was 2%. At each step x-ray
scattering was collected for approximately 1 h. For each
measurement step frames were summed and the back-
ground due to dark current was subtracted. Data were
then normalized by the incident beam monitor, and the
expansion into spherical harmonics was performed to de-
termine the anisotropic components of the SðQÞ and gðrÞ.

We found that the isotropic (‘ ¼ 0) component of SðQÞ,
S00ðQÞ, shows very small changes with the applied stress,

but, the elliptical (‘ ¼ 2) component, S02ðQÞ, shows sig-

nificant changes as is shown in the Fig. 1. The amplitude of
S02ðQÞ is roughly proportional to the stress, whereas the

shape is almost independent of the stress. The elliptical
(‘ ¼ 2) component of the PDF, g02;obsðrÞ, was obtained by

the spherical Bessel transformation, Eq. (3), and is shown
in Fig. 2. The g02;obsðrÞ is roughly proportional to the stress

in amplitude, while the shape remains almost unchanged,
as expected from the behavior of S02ðQÞ.

It can be shown that for axial elongation along z, the
elliptical PDF due to affine deformation, g02;affðrÞ, can be

expressed in terms of the derivative of the isotropic PDF,
g00ðrÞ [10];

g02;affðrÞ ¼ "zz;aff �g
0
2;affðrÞ

¼ �"zz;aff

�
1

5

�
1=2 2ð1þ �Þ

3
r
d

dr
g00ðrÞ (4)

where � is the Poisson’s ratio. Indeed the experimentally
observed rg02;obsðrÞ is close to the derivative as shown in

Fig. 3, particularly at large distances. We determined the
amplitude of the apparent elastic strain, "app, by matching

the experimental rg02;obsðrÞ to rg02;affðrÞ over the range of r
between 6.6 and 25 ��A, using the experimental value of
�ð¼ 0:38Þ [12]; "app ¼ "zz;aff over this range. The apparent

Young’s modulus, �="app, is 94.5 GPa, close to the value

determined by ultrasound resonance method, 89 GPa [12].
Published results of the effective Young’s modulus
determined by diffraction experiments are close to, but
slightly higher than those determined by ultrasound
measurements [13].
However, Fig. 3 shows small but significant differences

between the observed g02ðrÞ and g02;affðrÞ below 6.6 Å. These

differences could be caused by the anelastic events. Indeed
earlier studies found that the apparent strain determined by
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FIG. 1 (color). The isotropic part of the structure function,
S00ðQÞ, (above), and the changes in the ‘ ¼ 2 component of

the structure factor, S02ðQÞ (below). For clarity only three stress

levels are shown. The changes appear linear with the stress. The

S02ðQÞ is also shown up to 5 ��A in the inset with a stress step of

0.2, from 0.2 to 1.2 GPa.
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FIG. 2 (color). The isotropic part of the PDF, g00ðrÞ, (above),
and the ‘ ¼ 2 component of the PDF, g02ðrÞ (below), for different
applied external loads. For clarity only three stress levels are

shown. The g02ðrÞ is also shown up to 5 ��A in the inset with a

stress step of 0.2, from 0.2 to 1.2 GPa. The amplitude of the
anisotropic term is roughly proportional to the stress, whereas
the shape remains largely unchanged.
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the PDF analysis was not homogeneous, but was dependent
on the atomic distance, r [8,14–17]. This has been sug-
gested to be the effect of anelasticity [14]. However, in the
earlier studies the elastic and anelastic contributions have
not been quantitatively separated. An additional technical
complication is that in most papers the strain was assessed
from the isotropic PDF, gðrÞ, derived by Eq. (3).

When a stress is applied to a viscoelastic material the
strain response is given by;

"ð�expÞ ¼ "el þ
Z 1

0
"anelð�Þ½1� e��exp=��d� (5)

where "el is the elastic strain, �exp is the experimental time

scale, for instance the inverse of the strain rate, � is the
relaxation time and "anelð�Þd� is the anelastic strain with
the relaxation time between � and �þ d�. By approximat-
ing the exponential function by a step function we obtain,

"ð�expÞ � "el þ
Z �exp

0
"anelð�Þd�: (6)

Thus all the viscoelastic responses with the response time
shorter than the experimental time scale are included in the
apparent elastic strain. In order to evaluate the anisotropic
PDF due to the anelastic strain, we studied the sample

which was creep deformed as described above, at the stress
of 1.2 GPa and T ¼ 573 K for 30 min., to obtain the ‘ ¼ 2
PDF, g02;anelðrÞ. As was found previously [10,18] and is

shown in Fig. 4, g02;anelðrÞ is similar to g02;affðrÞ at large

distances. By comparing g02;anelðrÞ to g02;affðrÞ at large dis-

tances we determined the anelastic creep strain for this
particular experiment, "creep, and obtained �g02;anelðrÞ by

normalizing g02;anelðrÞ to the anelastic creep strain of unity.

We found that the deviations of the anelastic PDF,
g02;anelðrÞ, from the affine PDF, g02;affðrÞ, are very similar

to those for the tensile strain experiment after appropriate
scaling. This similarity indicates that the local structural
changes due to anelastic strain induced by the apparently
elastic deformation are very similar to those due to the
anelastic creep deformation, in spite of the differences in
time scale and temperature. As will be discussed elsewhere
the ‘ ¼ 2 PDF due to the anelastic effect is independent of
the stress level except for the amplitude, and when nor-
malized by the strain results in the identical �g02;anelðrÞ.
Therefore, the total PDF should be fit by

g02;totalðrÞ ¼ "zz;anel �g
0
2;anelðrÞ þ ð"app � "zz;anelÞ �g02;affðrÞ; (7)

where "zz;anel is the anelastic strain, and "zz;aff ¼ "app �
"zz;anel is the affine (elastic) strain. Figure 5 compares the

observed g02;obsðrÞ with g02;totalðrÞ at � ¼ 1:2 GPa. Except

for small differences which are most likely due to the
mismatch of resolution and noise, agreement is excellent,
confirming that the strain in this metallic glass includes
both the anelastic as well as affine components. The frac-
tion of the affine strain to the total strain, z ¼ "zz;aff="app, is

plotted as a function of the applied stress, �, in the inset of
Fig. 5. The value of z is nearly constant over this range of
stress, and in average 24% of the total strain is anelastic.
This result is in excellent agreement with the simulation
that suggested that about 20% of the apparent elastic strain
is actually an anelastic strain [7]. Many theories, such as
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FIG. 3 (color). The ‘ ¼ 2 component of the PDF, g02ðrÞ, at the
applied stress of 1.2 GPa (red solid line), compared to the PDF
for affine deformation (black dashed line). Here we show rg02ðrÞ
in order to emphasize oscillations at large r. The fit is very good
beyond 6.6 Å but obvious deviations are seen in the first atomic

shell up to 4 ��A.
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FIG. 4 (color). The ‘ ¼ 2 component of the PDF, g02ðrÞ, after
creep at 574 K for 30 min with the applied load of 1.2 GPa. The
dashed line shows the PDF expected for affine deformation,
which is fitted to the data at large distances. The anelastic strain
determined by the fit is 0.4%, whereas the total creep strain is
2%. The difference, 1.6%, is the plastic creep strain.
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the free-volume theory, assume that the defect level is of
the order of 1% [19], whereas the defect density suggested
by the present study is higher by an order of magnitude. On
the other hand this value agrees very well with the fraction
of the frozen liquidlike atoms, 24.3%, in the theory of the
glass transition in metallic glasses [20]. This point is
important, and will be discussed separately elsewhere.

The analysis above suggests that the applied load is
supported by only 76% of the body, and the rest, the
anelastic sites, offer no resistance to load at the time scale
of the experiment. Thus we can evaluate the true elastic
constant of the elastic portion, Eel ¼ �="zz;aff ¼ 124 GPa.
It has been known that the value of the shear modulus of a
metallic glass is lower by 20%–30% than calculated for
affine deformation [3,7] and the values for crystalline solids
of the same composition [21]. The difference has been
attributed to the noncollinear effect [3] and anelasticity
[7]. Because the Young’s modulus, E, is closely related to
the shear modulus, G, (E ¼ G 9

3þG=B , B is the bulk modu-

lus), the present result confirms that the apparent softening
of the shear modulus occurs because about a quarter in
volume fraction of a metallic glass is anelastic, and does not
offer shear rigidity at the experimental time scale.

In conclusion, we have shown through x-ray scattering
and the anisotropic PDF analysis that about a quarter of the

volume of a metallic glass is occupied by anelastic sites,
which are soft and bear no static shear load. Consequently
the shear modulus of a metallic glass is lowered by a
quarter compared to the instantaneous value. Just as other
glasses, metallic glasses are fundamentally viscoelastic,
and the volume fraction of the viscous sites is as much as
a quarter, not of the order of 1% as in many theories. This
point has to be fully taken into account in the application of
metallic glasses, particularly as structural materials.
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FIG. 5 (color). The ‘ ¼ 2 component of the PDF, g02ðrÞ, at
1.2 GPa, fitted to the combined PDF for affine and creep
(anelastic) deformation, Eq. (7). The fit shows marked improve-
ment over the one in Fig. 3 [11]. The inset shows the fraction of
elastic strain compared to the total apparent strain. It appears
constant of applied external stress up to 1 GPa, and on average it
is about 76%. The rest, 24%, is the anelastic strain.
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