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We report a direct observation of dynamical bifurcation between two plasma oscillation states of a

superfluid Josephson junction. We excite the superfluid plasma resonance into a nonlinear regime by

driving below the natural plasma frequency and observe a clear transition between two dynamical states.

We also demonstrate bifurcation by changing the potential well with temperature variations.
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A superfluid Josephson junction is formed by separating
two superfluid reservoirs with an array of nanoscale aper-
tures [1–3]. It exhibits many fascinating properties that are
also found in superconducting Josephson tunnel junctions
including Josephson oscillation [4], plasma oscillation [5],
the Fiske effect [6], and the Shapiro effect [7]. These
phenomena are nonlinear dynamical effects, some of
which have found applications in both superconducting
and superfluid fields as novel sensors [8–12] and amplifiers
[13,14] that remain efficient in the quantum limit. Unique
Josephson phenomena have also been reported in Bose-
Einstein condensates [15,16]. In this Letter, we report the
first observation of dynamical bifurcation between two
driven superfluid plasma oscillation states. The observed
switching behavior at the bifurcation point resembles that
of a Josephson bifurcation currently utilized in supercon-
ducting qubit research [17]. The results presented here not
only advance the close analogy between the macroscopic
quantum physics of superconductivity and superfluidity
but also open the possibility for the development of sensi-
tive nonclassical amplifiers for superfluid quantum inter-
ference devices [11,12].

Our apparatus is schematically represented in Fig. 1.
A cylindrical inner reservoir is bounded on the top by a
metallized flexible diaphragm, and an array of nanoscale
apertures is mounted at the bottom opening to the outer
reservoir. Both inner and outer reservoirs are filled
with superfluid 4He, and the aperture array forms a
superfluid Josephson junction that couples two macro-
scopic wave functions describing the two superfluid
reservoirs [18].

Near the superfluid transition temperature T�, the aper-
ture array junction behaves as an ideal, nondissipative,
nonlinear oscillator [3,19]. The mass current IðtÞ across
the junction driven by a chemical potential difference ��
is governed by the Josephson current-phase relation [5]:
IðtÞ ¼ I0 sin�ðtÞ, where I0 is the junction critical current
and �ðtÞ is the quantum phase difference across the junc-
tion. The phase difference �ðtÞ evolves in time according
to the Anderson phase evolution equation [18,20]:
@�ðtÞ=@t ¼ ���=@. In this ideal weak-coupling limit,
one can parameterize the junction with a nonlinear

hydrodynamic inductance LJ¼ð�4=2�ÞðdI=d�Þ�1¼�4=
ð2�I0 cos�Þ, where �4 � h=m4 is the circulation quantum
for superfluid 4He [3,19,21]. Note that this takes the same
exact form as the nonlinear superconducting Josephson
inductance LJ¼ð�0=2�ÞðdI=d�Þ�1¼�0=ð2�I0 cos�Þ,
where �0 � h=ð2eÞ is the magnetic flux quantum and I0
in this case is the superconducting Josephson critical
current.
The nonlinear hydrodynamic inductance of a superfluid

Josephson junction is shunted in parallel by a hydrody-
namic capacitance C associated with the presence of a
diaphragm and heat capacity and compressibility of the
fluid that it displaces [21,22]. The combined system is an
LC oscillator with the dynamics described by a phase
particle with coordinate � in a so-called washboard poten-
tial Uð�Þ ¼ ð�4I0=2�Þð1� cos�Þ. The oscillation within
this potential well is called the plasma mode (also called
the Helmholtz mode in a superfluid system), and its natural
frequency !p ¼ 1=

ffiffiffiffiffiffiffiffiffi
LJC

p
is called the plasma frequency.

One can also view the system as a rigid pendulum with
the phase difference � playing the role of the pendulum’s
displacement angle. For � � 1, LJ reduces to �4=ð2�I0Þ,
which suggests !2

p / 1=LJ / I0 in this small oscillation

amplitude limit.
In our neutral matter Josephson system, a plasma oscil-

lation can be directly observed, for example, by applying a
step voltage between the diaphragm and a nearby electrode

FIG. 1. A flexible diaphragm (D) and a rigid electrode (E)
form an electrostatic pressure pump. The diaphragm with a small
magnet (M) attached to it also forms the input element of a
sensitive displacement sensor through a nearby pickup coil (P).
A junction (X) consists of 75� 75 60-nm apertures spaced on a
2-�m square lattice in a 60-nm-thick silicon nitride window.

PRL 105, 205302 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 NOVEMBER 2010

0031-9007=10=105(20)=205302(4) 205302-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.205302


to create a pressure difference across the junction. The
applied �� sets the phase particle in motion within the
potential well, and the fluid in the aperture array exhibits
characteristic oscillations in time. This results in the oscil-
lations of the diaphragm hydraulically coupled to the
superfluid within the aperture array, which we detect
with our displacement sensor. Plasma frequency for a
superfluid Josephson system is typically below 100 Hz,
whereas the superconducting plasma frequency is typically
in 10–100 GHz range. See Refs. [3,23] for typical time
traces of superfluid plasma oscillations.

Figure 2 shows the square of measured plasma fre-
quency plotted against the critical current for several
different temperatures close to T�. The temperatures
shown are T� � T values with T� � 2:176 K. The ex-
pected !2

p / I0 dependence in an ideal Josephson regime

can be clearly seen near T� (indicated by a solid line in the
plot). However, as the temperature is lowered, the system
leaves the ideal Josephson regime to become more dissi-
pative, and the current-phase relation starts to gain more
linearity [3]. The simple relation !2

p / I0 clearly does not

hold in the crossover regime.
The nonlinearity of the Josephson junction manifests

itself in the phase particle picture in analogy with a rigid
pendulum as described earlier. One of the simplest models
for such a system is a damped, forced oscillator with a
cubic nonlinearity: €xþ � _xþ �xþ �x3 ¼ B cosð!dtÞ,
where B is the driving parameter,!d is the drive frequency,
and �, �, and � represent the strengths of damping, stiff-
ness, and nonlinearity, respectively. This is the so-called
Duffing oscillator model with a ‘‘soft spring’’ condition
(�< 0) [24–26]. The expected oscillator response is plot-
ted as a function of detuning parameter 2Qð!d=!0 � 1Þ in
Fig. 3 for increasing values of the dimensionless driving

amplitude f � B
ffiffiffiffiffiffiffiffiffiffiffiffi
�=�3

p
[27]. We have set Q ¼ 300 to

match the observed quality factor of superfluid plasma
mode at T� � T ¼ 10 mK. For small driving strength,
the sinusoidal potential is well approximated by a parabola,
and therefore the particle behavior is harmonic with its

response Lorentzian in shape. However, for large ampli-
tude oscillations, nonlinear terms act to reduce the oscil-
lation frequency, causing the peak to bend towards the left.
For even stronger drives, the bending of the peak becomes
so much that the oscillator bifurcates from a single-valued
to a bistable regime. At locations such as the one indicated
by a vertical line in Fig. 3, the system can have two
possible oscillation states with different amplitudes and
phases. Increasing the oscillation amplitude at such bias
points eventually causes the system to switch between the
two dynamical states (from L to H, for example), giving
rise to a sharp step on the lower frequency side of the
distorted peak. Since the superfluid Josephson junction is
intrinsically nonlinear, it suggests a possibility for such
bifurcation. If we ramp the plasma oscillation with an ac
drive at a frequency slightly below !p, at some critical

drive level, the system should exhibit a sharp transition
between two oscillation states. In the experiment reported
here, we probe this by applying an ac voltage (Vac) between
the diaphragm and the electrode at a drive frequency !d.
Since the force on the diaphragm scales as the applied
voltage squared, we add a dc offset (Vdc) to the ac excita-
tion to linearize the drive. The voltage from our SQUID-
based displacement sensor is fed into a lock-in amplifier
with a reference signal synchronized with the ac drive. We
then monitor the amplitude R of superfluid plasma oscil-
lations at the drive frequency !d as well as the oscillation
phase 	 relative to the drive.
Figure 4 is an example of the amplitude and the phase of

superfluid plasma oscillations for different excitations,
while sweeping the frequency !d. When the drive is kept
minimal, both R and 	 plots show behaviors expected for a
resonant system in a linear regime. However, a dramatic
change takes place when we increase the excitation to push
the system into a nonlinear regime. The resonant peak
bends towards lower frequency as predicted, and an abrupt
step appears on the left side of the peak as the system
bifurcates and transitions from one state to another. This
effect is pronounced and more apparent in the 	 plot where
a smooth zero crossing evolves to an abrupt switching

FIG. 2 (color online). Measured plasma frequency squared vs
critical current. The solid line is a linear fit to the first four points
closest to the superfluid transition temperature. The dotted line
is a guide to the eye. The point at the bottom left corner is for
T ¼ T�, where both !p and I0 are zero.

FIG. 3 (color online). Predicted oscillator responses. Dashed
lines indicate unstable solutions. The top two curves exhibit
dynamical bifurcation as the system is driven into a highly
nonlinear regime. The drive amplitude parameter f is increased
from 1.5 to 3:5� 10�4 at 5� 10�5 increments.
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between two oscillation states as the drive is increased.
This sudden transition from a low-amplitude and phase-
lagging state to a high-amplitude and phase-leading state is
a manifestation of nonlinear dynamical bifurcation, and
such a phenomenon often seen in electrical and optical
systems [24] is observed for the first time here in a super-
fluid system.

The predicted nonlinear behaviors in Fig. 3 have been

generated for different values of f ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffi
�=�3

p
defined for

the Duffing model. This implies that, even for a constant
drive B, one should, in principle, be able to observe the

predicted evolution by varying
ffiffiffiffiffiffiffiffiffiffiffiffi
�=�3

p
, which corresponds

to changing the shape of the potential well. However, for
most physical systems, all the parameters are fixed by
experimental configurations, and increasing the drive B
and thus sweeping different parts of the potential well is
often the only way to harness different degrees of anhar-
monicity. An unique feature of the reported phenomenon in
superfluid helium is that one can change various parame-
ters by varying the temperature. We demonstrate this in
Fig. 5. Here, we have kept the drive level constant but
increased the temperature, which is equivalent to holdingB
constant but increasing � and decreasing � in the Duffing
model. The Lorentzian shape becomes distorted and a
bifurcation step appears again, verifying the general pic-
ture for the driven nonlinear dynamical system.

Although the main nonlinear features such as decreasing
oscillation frequency with increasing amplitude and the
appearance of bifurcation are consistent with the predic-
tions shown in Fig. 3, we find that the exact functional
forms describing the data such as those shown in Figs. 4
and 5 are more complicated than what a simple Duffing

model predicts. A more sophisticated model on the dy-
namics of superfluid Josephson junctions and plasma os-
cillations is needed to better parametrize the system
response and further investigate different parameter
regimes.
We note that the height of the potential well that binds

the phase particle decreases with increasing temperature.
This effect combined with a decreasing quality factor near
T� makes it difficult to slowly ramp up the plasma oscil-
lation without kicking the particle out of the potential well
once the temperature reaches a few millidegrees Kelvin
away from T�. The phase particle escaping from one
potential well to another corresponds to the so-called
Josephson oscillation, which we need to avoid in achieving
the dynamical bifurcation with plasma mode oscillations.
One interesting aspect of the results reported here is the

possibility for exploiting the anharmonicity of the junction
oscillator as a novel amplifier, in close analogy with
rf-driven Josephson bifurcation amplifiers currently uti-
lized in quantum computing research [13]. As long as the
system remains in the Josephson regime, critical current
can be deduced from the measured plasma frequency, and a
signal from small change in !p will be enhanced greatly if

we tune the system to sit at the bifurcation point. The
smallest variation in the critical current that can be re-
solved should be limited by vibrational noise and ulti-
mately thermal fluctuations [28,29]. In this digital mode
of operation, the bifurcation phenomenon itself becomes a
sensitive threshold detector for the critical current, and this
could be a useful tool for superfluid quantum interference
devices. A superfluid interference device typically consists
of a loop of superfluid interrupted by two junctions as in
the case of a dc-SQUID. It has been utilized for rotation
sensing through the Sagnac effect [10–12], direct measure-
ment of a phase gradient associated with superfluid flow
[30], detection of quantized vortex motion [31], and con-
struction of an absolute gauge for quantum phase shifts
[32]. In these experiments, quantum phase shifts to be
measured are typically stable, unlike the qubit case, where

FIG. 4 (color online). Amplitude of plasma oscillation and
oscillation phase relative to the drive as a function of drive
frequency !d. These data are taken at T� � T ¼ 10 mK.
Excitations (VacVdc) are 0.003, 0.01, 0.04, 0.06, and 0.09 ½V2�.

FIG. 5 (color online). Probing the nonlinearity with tempera-
ture changes with a constant drive. The overall shift in frequency
is due to the temperature dependence of !p. Temperatures

shown are T� � T values. Excitation VacVdc ¼ 0:006 ½V2�.
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short-lived signals benefit greatly from a fast latching
readout [33]. However, to detect a small phase shift with
a superfluid device, one is often required to scale up the
sense-loop size, leading to higher kinetic inductance and
shallower modulation depth. A detection scheme based on
bifurcation phenomena could provide a sensitivity en-
hancement without the increase in device size. A longer
measuring time required for resetting the system after each
switching event could, however, be a trade-off and should
be considered.

In conclusion, we have performed a new experiment
where we excite the superfluid plasma mode into a non-
linear regime. We have shown that the system transitions
between two dynamical states. We have also demonstrated
the bifurcation phenomena by temperature variations. The
findings reported here also advance the deep analogy be-
tween the dynamics of superconducting Josephson junc-
tions and superfluid Josephson systems.
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