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We report on the experimental demonstration of the internal bosonic Josephson effect in a rubidium

spinor Bose-Einstein condensate. The measurement of the full time dynamics in phase space allows the

characterization of the theoretically predicted �-phase modes and quantitatively confirms analytical

predictions, revealing a classical bifurcation. Our results suggest that this system is a model system which

can be tuned from classical to the quantum regime and thus is an important step towards the experimental

investigation of entanglement generation close to critical points.
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Bifurcation occurs when a small smooth parameter
change in a dynamical system leads to a sudden qualitative
or topological change in its behavior. In classical nonlinear
systems, bifurcations are frequently encountered and are
strongly related to critical phenomena and chaotic behavior
[1]. This relation is less obvious in the quantum regime due
to the intrinsic uncertainty of the quantum states. However,
macroscopic quantum systems exist which can be well
described by classical theories exhibiting bifurcation phe-
nomena [2–6]. It has been theoretically shown that such a
bifurcation can be used for the creation of highly entangled
and nontrivial quantum states [3,7–9]. An exemplary sys-
tem with these characteristics is the bosonic Josephson
effect [10–14], which has so far been observed in weakly
linked reservoirs of helium [15] and Bose-Einstein con-
densates [16–18].

We report on the demonstration of the Josephson effect
in a Bose-Einstein condensate with internal, i.e., spin,
degrees of freedom [19]. The internal character of the
system allows us to access a parameter regime around
the bifurcation point of the system which has not been
addressable with experiments using external degrees of
freedom [16–18]. Since the experimental control of the
tunneling coupling in our system is realized via electro-
magnetic radiation, the well-developed techniques of pre-
cision spectroscopy can be employed to map out the full
phase space, i.e., dynamics of canonical conjugate varia-
bles, with high accuracy.

The system is realized by N rubidium atoms coherently
distributed between two internal states jai and jbi of the
ground state manifold. These states are linearly coupled
with resonant two-photon radio-frequency-microwave ra-
diation and experience coherent nonlinear interaction due
to s-wave scattering between the atoms (see Fig. 1).
Assuming that both states are in the same spatial mode,
the dynamics is well described in the N-particle two-mode

model with the Hamiltonian Ĥ ¼ �Ĵ2z ��Ĵx, where ~̂J is
the Schwinger pseudospin representation of the N atom

system. Ĵz describes quantum mechanically the population

difference between the two modes, and Ĵx and Ĵy are

corresponding coherences. Since the time evolution is given
only by rotations in configuration space with the total
number of particles conserved, the dynamics can be visual-
ized on a generalized Bloch sphere [20] [see Fig. 1(b)]. The
parameters � and� describe the nonlinearity due to atom-
atom interaction and the linear coupling strength, respec-
tively. It is interesting to note that this many-particle
Hamiltonian is a special case of the more general Lipkin-
Meshkov-Glick model [21] developed as a model system
for theoretical studies in the context of nuclear physics.
In our experiments we investigate the dynamics of a

macroscopic number of particles (N ¼ 500), and thus a
mean field description is justified. This becomes obvious
by comparing the uncertainty area of a coherent spin
state—on the order of 1=N—to the surface of the Bloch
sphere which is normalized to 4� [Fig. 1(b)]. The corre-
sponding classical Hamiltonian is obtained by substituting
the quantum mechanical operators by complex numbers

such that H ¼ �
2 z

2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2
p

cos�, where z ¼ na�nb
N is

the normalized population difference and � corresponds
to the relative phase between the two internal states. The
system parameters have been absorbed into the single

parameter � ¼ �N
� [22].

The equations of motion are given by

_zðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2ðtÞ
q

sin�ðtÞ;
_�ðtÞ ¼ �zðtÞ þ zðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� z2ðtÞp
cos�ðtÞ:

Depending on the experimentally tunable parameter �,
this system leads to qualitatively different dynamical be-
havior, i.e., Rabi versus Josephson dynamics [23]. This
becomes obvious by a classical fixed point analysis ( _z ¼
0, _� ¼ 0) which reveals the underlying topological change
of phase space. For �< 1, the Rabi regime, the linear
coupling is governing the time evolution, and two fixed
points F0 ¼ ðz;�Þ ¼ ð0; 0Þ and F� ¼ ð0; �Þ characterize
the dynamics. The trajectories are indicated by the solid
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lines in Fig. 1(c). For vanishing interaction between
the particles, � ¼ 0, this corresponds to resonant Rabi
oscillations of N independent particles. The situation
changes drastically for �> 1 since the F� fixed point
undergoes a supercritical pitchfork bifurcation implying
that F� becomes unstable while two new stable fixed

points F� ¼ ½� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð1=�2Þp

; �� are formed [Fig. 1(c)].
For our system this implies that a single trajectory around
F� splits up in two distinct trajectories around the new
fixed points F�, which are delimited by a separatrix.

For a quantitative experimental study of the bifurcation
phenomenon, we study the temporal mean imbalance for
two fixed initial preparations. In the Rabi regime (�< 1)
initial preparations with � ¼ � and z ¼ �z0 correspond-
ing to points north or south of the equator (see the inset in
Fig. 2) lead to dynamics with a vanishing temporal mean
population imbalance. This results from the fact that both

preparations share the same trajectory; i.e., no separatrix
exists. This is distinct to the Josephson regime where initial
preparations that are enclosed by the separatrix lead to
different trajectories resulting in nonvanishing mean im-
balances. This is demonstrated quantitatively in Fig. 2,
where the resulting temporal mean imbalances for the
initial preparation points ð�0:454; �Þ are shown. The ex-
perimental data clearly reveal the topological change in the
system’s phase space. It is in quantitative agreement with
the analytical predictions (solid lines) [22] calculated by
using independently measured parameters (see [24]).
To put this bifurcation measurement in a more general

context, we examine the whole phase portrait of the system
for characteristic values of � across the Rabi to Josephson
transition. The nonlinear interaction � is set by a Feshbach
resonance at 9.1 G [25] and is kept constant for all experi-
ments. Different regimes of � are explored by changing
the linear coupling strength � adjusted by the intensity of
the radio-frequency radiation. We check the resonant cou-
pling condition by regular reference measurements [24].
The measurement of the dynamics with shot noise limited
precision is feasible in our experiment since we prepare the
initial condition on the quantum mechanical uncertainty
level, i.e., coherent spin states [26]. The initial state prepa-
ration is done in a two-step process. The population im-
balance zðt ¼ 0Þ is controlled by the duration of a short
two-photon pulse applied to the particles in state jai. The
dynamics is initiated by a nonadiabatic change of the

FIG. 2 (color online). Direct observation of the symmetry
breaking in the dynamics due to the bifurcation. Two initial
states symmetric in the upper and lower hemisphere (see the
inset) lead to qualitatively different dynamics in the Rabi and
Josephson regime, respectively. In the Rabi regime both initial
states share the same trajectory around the stable fixed point F�,
and the temporal mean imbalance vanishes in both cases. By
increasing � exceeding the critical value, a separatrix is formed
and the chosen initial preparations lead to two distinct trajecto-
ries separated by this separatrix. The dynamical modes are
characterized by a nonvanishing mean population imbalance.
The solid line represents the theoretical prediction.

FIG. 1 (color online). Interacting many-particle system as a
model system for bifurcation physics. (a) 87Rb offers two hy-
perfine states jai (blue) and jbi (red) which are linearly coupled
via a two-photon transition with Rabi frequency � and which
allow for adjusting the interparticle interaction � via a Feshbach
resonance. (b) The many-particle state is represented on a
generalized Bloch sphere, and its uncertainty area for our ex-
perimental parameters is shown, revealing that a mean field
description is adequate. Points on the sphere represent popula-
tion difference z (z direction) and relative phase � between the
two internal states in the same spatial mode. (c) Trajectories on
the Bloch sphere below and above the bifurcation value of the
ratio � ¼ �N=�. The typical supercritical pitchfork bifurcation
scenario occurs; i.e., a stable fixed point bifurcates in two new
stable fixed points while the original becomes unstable. The
arrows indicate the direction of flow close to these points.
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radio-frequency radiation phase of �ðt ¼ 0Þ ¼ �0 and
simultaneous attenuation of the radiation. After an evolu-
tion time t, either the population difference zðtÞ of the final
state is directly measured or the phase�ðtÞ is mapped onto
an observable population imbalance by applying a short
�=2 pulse before imaging. This last pulse is applied with
two phases differing by 90� to get a well-defined phase
measurement over the full interval 0 to 2�. By repeated
experiments we are able to measure both observables,
allowing the mapping out of the phase portrait.

Figure 3(a) shows the result in the Rabi regime, where
the linear coupling is dominating. The dynamics is char-
acterized by two fixed points; however, the corresponding
trajectories around these are differently distorted. In the
literature, the motion around F0 is known as plasma oscil-
lations already experimentally observed [17,18], while the
trajectories around F�, known as � oscillations [22], have
not been demonstrated so far. By reducing the linear cou-
pling the Josephson regime is entered. The transition is
marked by the bifurcation of F� as seen in Fig. 3(b), and
the dynamics corresponding to the new fixed points is
known as macroscopic quantum self-trapping [22]. This
describes the physical fact that the temporal mean popula-
tion imbalance is nonzero. These modes [green shaded
areas in Figs. 3(b) and 3(c)] are separated in phase space
by the separatrix from the plasma and � oscillations which
are characterized by vanishing temporal mean hzi ¼ 0. By
further increasing �, the topology does not change any-
more but the trajectories start to encircle the north and
south poles of the sphere. This implies that the phase
evolution runs without bound and connects the observed
dynamics with the phenomenon of the ac Josephson effect
found in superconductors [27]. It is important to note
that the full analogy is not given due to the spherical
topology arising from particle number conservation. In
superconductors charge neutrality implies that the chemi-
cal potential difference is kept constant, and thus the
dynamics is rather constrained to a cylinder. However,
the analogy is given best for large � and small absolute
imbalance jzj [28].

The full time dynamics, i.e., particle number difference
and phase difference, is depicted in Fig. 4. The shaded
areas represent the theoretical expectations without free
parameters but including experimental uncertainties of 5%
in �. In the limit of a vanishing interaction (� ¼ 0),
plasma and� oscillations are not distinguishable. For finite
� but still in the Rabi regime [Fig. 4(a)] the difference
between plasma and � oscillations manifests itself most
pronouncedly in the modified oscillation frequency which
is reduced in the case of � oscillations and enhanced for
plasma oscillations [22]. Crossing the critical value of �,
i.e., in the bifurcated regime, the new dynamical mode,
known as macroscopic quantum self-trapping, is observed
[Figs. 4(b) and 4(c)]. In the Josephson regime, but close to
the critical value (1<�< 2), all self-trapping modes have

an oscillating phase difference [Fig. 4(b)], while for �> 2
also running-phase self-trapping modes exist [Fig. 4(c)].
In this work, we demonstrate the experimental realiza-

tion of a quantum mechanical many-particle system exhib-
iting a classical bifurcation. This opens up a new
experimental route for generating nontrivial collective
quantum states. It has been theoretically discussed that a
general feature of the realized system is the potential
for fast generation of macroscopic entanglement at the

FIG. 3 (color online). Experimentally observed phase portraits
of the dynamics showing all possible types of trajectories. The
experimental data for three different values of � in different
panels are compared to the theoretical model with no free
parameter (solid lines). The theoretical curves are shown addi-
tionally on the Bloch spheres. (a) Phase portrait in the Rabi
regime for � ¼ 0:78. Plasma (blue) and � oscillations (red) can
be clearly identified. The deformation relative to noninteracting
Rabi oscillations due to the interaction is clearly visible on the
Bloch sphere. (b) The Josephson regime is entered by reducing
the coupling strength � (� ¼ 1:55). Here the bifurcation leads
to new stable solutions showing macroscopic quantum self-
trapping with mean phase �. This is verified by the experimental
data (green squares and green crosses). The black solid line on
the Bloch sphere corresponds to the separatrix defining the
green shaded area of macroscopic quantum self-trapping.
(c) For �> 2 the separatrix encloses the two poles, and self-
trapped trajectories with running phase behavior are found
experimentally for � ¼ 3:1 (orange squares and circles).
These trajectories resemble the ac Josephson effect found in
superconducting Josephson junctions.
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bifurcation point or close to the separatrix [7]. The dem-
onstrated high level of experimental control together with
the ability of precise measurement of conjugate collective
variables [26] makes our system a model system for these
kinds of investigations and allows the generation as well as
the study of nontrivial many-particle quantum dynamics in
the macroscopic regime.
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FIG. 4 (color online). Exemplary time dynamics of population
imbalance and relative phase. (a) Plasma (blue) and � oscilla-
tions (red) in the Rabi regime (� ¼ 0:78). The dynamics about
the two fixed points is qualitatively the same. However, the
oscillations with mean phase � are slower than their counterparts
with vanishing mean phase. In the former case the atom inter-
action counteracts, whereas in the latter it assists the linear
coupling. The shaded area corresponds to the theoretical pre-
diction including the experimental uncertainty in �.
(b) Macroscopic quantum self-trapping for � ¼ 1:55. Going
beyond the critical value� for bifurcation, the Josephson regime
is entered. Time traces show oscillations around the northern
fixed point Fþ, while the mean phase varies around �.
(c) Running phase mode found at � ¼ 3:1. The system is
prepared on a trajectory that encircles the north pole of the
sphere. Dynamics in the population imbalance is similar to (b),
but the phase runs without bound as is the case for the ac
Josephson effect in superconductors.
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