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Recent experiments have proved that the response to short laser pulses of common optical media, such

as air or oxygen, can be described by focusing Kerr and higher order nonlinearities of alternating signs.

Such media support the propagation of steady solitary waves. We argue by both numerical and analytical

computations that the low-power fundamental bright solitons satisfy an equation of state which is similar

to that of a degenerate gas of fermions at zero temperature. Considering, in particular, the propagation in

both O2 and air, we also find that the high-power solutions behave like droplets of ordinary liquids. We

then show how a grid of the fermionic light bubbles can be generated and forced to merge in a liquid

droplet. This leads us to propose a set of experiments aimed at the production of both the fermionic and

liquid phases of light, and at the demonstration of the transition from the former to the latter.
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In suitable optical media, light has been argued to
acquire material properties. A long-known example is
the equivalence of the paraxial propagation of a laser pulse
in a Kerr medium with the time evolution of a superfluid
Bose-Einstein condensate, due to the identity of the non-
linear Schrödinger equation with the Gross-Pitaevskii
equation [1]. More recently, optical induction has been
used to create photonic crystals [2], a photonic system
has been designed that may undergo a Mott insulator to
superfluid quantum phase transition [3], and soliton
solutions for light propagation in cubic-quintic (CQ) non-
linear media have been shown to behave like ordinary
liquids [4,5].

On the other hand, recent experimental and theoretical
works have proved that the response to ultrashort laser
pulses of common optical media, such as air or oxygen,
can be described by focusing Kerr [6] and higher order
nonlinearities of alternating signs [7], which have also
been argued to provide the main mechanism in filament
stabilization, instead of the plasma defocusing [7].

In this Letter, we demonstrate by analytical and numeri-
cal computations that such media can support the propa-
gation of steady solitary waves that appear in two clearly
different phases. The low-power solitons are governed by
the same equation of state as a degenerate gas of fermions.
We will call such a system ‘‘fermionic light.’’ On the other
hand, the high-power localized states satisfy the Young-
Laplace (YL) equation that governs the formation of drop-
lets in ordinary liquids, similarly to the result that was
recently obtained for the CQ model [5]. We also show
how to generate a grid of fermionic light bubbles and
make it turn into a liquid light droplet.

We will consider the (paraxial) propagation along the z
direction of a linearly polarized laser beam, so that the
complex electric field component �ðx; y; zÞ satisfies the
nonlinear Schrödinger equation
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2k0n0
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?�þ k0�n� ¼ 0; (1)

where n0 is the linear refractive index of the medium,
r2

? ¼ @2=@x2 þ @2=@y2 is the transverse Laplace opera-

tor, and k0 ¼ 2�=�0 is the mean wave number in vacuum,
where �0 is the central wavelength of the laser source
which will be fixed to �0 ¼ 800 nm throughout this
Letter as in the experiment of Ref. [7]. For the optical
media that have been studied in Ref. [7], the nonlinear
correction �n to the refractive index can be expanded as

�n ’ n2j�j2 þ n4j�j4 þ n6j�j6 þ n8j�j8; (2)

with alternating sign coefficients n2; n6 > 0 and n4; n8 < 0
that contribute to focusing and defocusing, respectively.
Taking into account that the values of the second-order
dispersion and multiphoton-absorption coefficients for air
are k00 ¼ 0:2 fs2=cm and � ¼ 1:27� 10�126 cm17=W9

[8], respectively, we have checked that both effects do
not lead to significant corrections in our results. To be
concrete, we will perform most of the numerical calcula-
tions in the case of O2 as the propagation medium, taking
the mean values obtained in the experiment [7], n2 ¼
1:6� 10�19 cm2=W, n4 ¼ �5:2� 10�33 cm4=W2, n6 ¼
4:8� 10�46 cm6=W6, n8 ¼ �2:1� 10�59 cm8=W4. For
comparison, however, we will also mention the results
that we obtain for air, using the corresponding values for
the coefficients n2q that are also given in Ref. [7].

We will search for finite localized solutions of Eq. (1) of

the form �ðx; y; zÞ ¼ �ðrÞe�i�z, where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and

� is the propagation constant. Figure 1 shows the result of
our numerical computation for �ð0Þ in the existence do-
main of such solitons in oxygen (�1 <�< 0), where
�1 ¼ �0:096 cm�1, and for the radial profiles �ðrÞ of
three of them (see left-hand inset in Fig. 1), corresponding
to the low-power (black solid line), moderate-power
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(red dashed line), and high-power regimes (blue dash-
dotted line), respectively. We express the transverse spatial
variables x; y in terms of the adimensional coordinates �,

�, measured in units of ðn4=n0Þ1=2ðk0n2Þ�1. The amplitude

j�ð0Þj is measured in units of ðn2=n4Þ1=2.
As in the CQ case,� can be identified with the chemical

potential of an equivalent thermodynamical two-
dimensional system [5] of N ¼ R

�dxdy � R j�j2dxdy
particles, described by the Landau grand potential [9]
� ¼ �R

pdxdy, where the pressure field p is now

p¼ � 1

2k0n0
jr?�j2 þ�j�j2 þ k0

X4
q¼1

n2q
�2ðqþ1Þ

qþ 1
: (3)

For our optical system, �, N, �, and p correspond to the
propagation constant, the power, the Lagrangian leading to
Eq. (1), and the Lagrangian density, respectively.

The right-hand inset of Fig. 1 shows the pressure dis-
tributions pðrÞ, measured in units of k0n

3
2n

�2
4 , correspond-

ing to the stationary states discussed above. Notice that all
the radial distributions display both positive and negative
pressure regions, because this a necessary condition for the
existence of solitary waves. For the low-power soliton
(black solid line), corresponding to small values of j�j,
we can obtain an analytical expression by using the varia-
tional method with the ansatz �ðA; rÞ ¼ A expð�r2=R2Þ.
The values of Að�Þ and Rð�Þ that minimize � for a given
value of � can then be used to compute the pressure
distribution. Taking the first nonvanishing order in j�j
and inverting the dependence Rð�Þ, we find a simple
analytical approximation for the central pressure pc as a

function of either the radius R ¼ ffiffiffiffiffiffiffiffiffiffiffi
2hr2ip

of the soliton or

the central density �c ¼ j�ð0Þj2 (corresponding to the
beam intensity),

pc ¼ a

k30n
2
0n2

1

R4
¼ bk0n2�

2
c; (4)

with a ¼ 4 and b ¼ 1=4. This relation is similar to the
equation of state of a degenerate gas of fermions of massm
at zero temperature. In fact, if we apply the general defi-
nition of the Fermi momentum [9]PF to a two-dimensional
system, we obtain PF ¼ @

ffiffiffiffiffiffiffiffiffiffi
2��

p
, with � the density of the

Fermi gas. As a consequence, the pressure, defined as the
average force on a unit orthogonal line in the gas, can
be obtained from the average kinetic energy as follows:

p ¼ �hEkini ¼ �

2m

RPF

0 P2PdPRPF

0 PdP
¼ �@2

2m
�2; (5)

which shows the same dependence with �2 as Eq. (4). This
proves the formal analogy of our low-power solitons with a
degenerate Fermi gas in the central region around r ¼ 0,
which is arbitrarily large in the limit�!0 (corresponding
to large radius R!1). For these reasons, we will call
‘‘fermionic’’ the phase where the pressure is proportional
to �2.
Note that in the limit� ! 0 our variational computation

gives a constant N ¼ 2�
k2
0
n0n2

, which is consistent with the

known result for the power flow leading to the collapse
threshold in a Kerr medium [10]. The magnitude of this
powerN lies in the range of few GW in bothO2 and air, and
can be interpreted as the threshold for the existence of the
fermionic light solitons.
Figure 2 shows the numerical computation of pc as a

function of either R (black solid line) or �c (inset, black
solid line) for all the nodeless solitary states of the model.
The lower branch, corresponding to the low-power soli-
tons, is in excellent agreement with the dependence de-
scribed by Eq. (4), as it can be inferred from the fitting (red
dotted) straight line with slope slow ¼ �4. Furthermore, in
the inset of Fig. 2 we also show the quantitative agreement
between theory and numerics by comparing pc with �c

instead of R. In this case, the slope of the straight line is
sinset ¼ 2, thus demonstrating the quadratic dependence on
�c given by Eq. (4). However, the correct numerical values
of the constants are a ¼ 2:5 and b ¼ 0:29, in reasonable
agreement with the result of the variational method given
above. We have checked numerically that the asymptotic
behavior represented by the red lines in Fig. 2 (dotted line
and dashed line in the inset) is practically independent of
the higher order nonlinearities n2q (q > 1), as predicted by

the theory. In particular, these results can be directly
applied to both Kerr and CQ models.
On the other hand, the high-power localized solu-

tions exhibit top-flat profiles with an inhomogeneous
negative pressure profile on the border, similar to those
of the solitons appearing in the CQ model [5]. As a

FIG. 1 (color online). Plot of the central amplitude �ð0Þ vs
�=�1 for the family of fundamental eigenstates of Eq. (1). Note
that �ð0Þ has a maximum for �=�1 � 0:7, due to the defocus-
ing nonlinearities. Left-hand inset: Radial profiles of three
eigenfunctions of Eq. (1) with �=�1 ¼ 0:004 (black solid
line), �=�1 ¼ 0:3 (red dashed line), and �=�1 ¼ 0:97 (blue
dash-dotted line), respectively. Right-hand inset: Radial pressure
profiles corresponding to these solutions. The low-power profile
is magnified by a factor of 103 for clarity. Labeled points on the
main curve refer to the eigenstates displayed within the insets.
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consequence, the gradient term in Eq. (1) can be neglected
close to the origin, and we get � ¼ �k0�nð0Þ ¼
�k0

P
4
q¼1 n2q�ð0Þ2q. By generalizing the argument of

Ref. [5] including the higher order nonlinearities, we ob-
tain that these states obey the celebrated YL equation [11],
pc ¼ 2�=R, describing the behavior of usual liquid drop-
lets. The value of the surface tension is

� ¼ n2ffiffiffiffiffiffiffiffiffiffiffiffiffi
2n0n4

p
Z �1

0

�
��1�2 � k0

X4
q¼1

n2q
�2ðqþ1Þ

qþ 1

�
1=2

d�;

(6)

where�1 and�1 are the asymptotic values corresponding
to the R ! 1 droplet, which can be computed by solving
the equation pc ¼ 0 (neglecting the Laplacian term).
For the propagation in oxygen, we have obtained the fol-
lowing variational estimations:�1 ¼ �0:247ðk0n22n�1

4 Þ ¼
�0:096 cm�1, �21¼0:712ðn2n�1

4 Þ¼2:19�1013 W=cm2,

�¼0:0715ðn22n�3=2
4 n�1=2

0 Þ¼4:88�109 W=cm2. These re-

sults, obtained assuming a top-flat function, are in excellent
agreement with the computation given in Fig. 1. In Fig. 2, we
show that our numerical solution in the case of O2 satisfies
theYL equation (green dashed line)with very good accuracy
for a wide range of values of �. On the other hand, for the
propagation in air, the liquid light phase would correspond
to a higher intensity, ½�21�a ¼ 2:98� 1013 W=cm2, with
½�1�a ¼ �0:116 cm�1 and ½��a ¼ 7:16� 109 W=cm2,
and the YL equation would still be valid.

As we have seen above, the propagation of self-guided
light beams in media like oxygen can occur in two clearly
separated phases, satisfying two different equations of
state. In fact, we have checked that qualitatively similar

results can also be obtained for the CQ case, and occur
whenever the nonlinear refractive index displays a single
well-defined maximum as a function of the intensity.
It would then be interesting to demonstrate the possibility
of a transition between the fermionic bubbles and the
liquid droplets of light. A suggestive analogy is that of
the collapse of a star, that occurs when the gravitational
interaction overcomes the Fermi pressure of the electrons.
We can obtain a qualitatively similar result in the case of
light propagation in oxygen, by compressing the fermionic
bubbles using a harmonic potential, leading to the genera-
tion of a liquid light droplet. Figure 3 shows the result of
our simulation in O2. The initial state (see left-hand snap-
shot in Fig. 3) consists of a regular grid of fermionic light
bubbles with �=�1 ¼ 0:3 (see their radial profile in
Fig. 1), with a separation between nearest neighbors
��;� ¼ 40. We include an external harmonic potential

Vð�;�Þ¼K
2 ð�2þ�2Þ with K ¼ 5� 10�5 in Eq. (1) in

order to induce a net force acting on the grid with the
aim of making all the fermionic solitons collide in the
center of the computational window ð�; �Þ ¼ 0.
This parabolic potential can be obtained by inducing in

the medium a ‘‘gas lens’’[12], which can be constructed
with an electrically heated pipe through which passes a
laminar flow of gas. By controlling the differential heating
at the boundaries and the velocity of the flow, a parabolic

FIG. 2 (color online). Plot of the logarithms of pc vs R for the
fundamental solitons (black line). The fermionic behavior of Eq.
(4) (red dotted line) and the liquid YL equation (green dashed
line) are compared with the numerics. The labeled points corre-
spond to the same eigenstates displayed in Fig. 1. For each value
of R, two different outcomes are possible depending on the
power, corresponding to two different phases of light.
Inset: Plot of lnðpcÞ vs lnð�cÞ (black solid line) overlapped
with Eq. (4) (red dashed line) for comparison.

FIG. 3 (color online). Isosurface intensity plot of the dynami-
cal phase transition from a square grid of fermionic light solitons
to an individual liquid light soliton in O2. All solitons in the grid
are eigenstates with �=�1 ¼ 0:3 displayed in Fig. 1. They are
forced to merge in the center of the computational window by
means of an external harmonic potential. We can see three
pseudocolor plots displaying the initial condition (left, 	 ¼ 0),
the collapse of the light bubbles (middle, 	 ¼ 200), and the final
state (right, 	 ¼ 500). In the latter we observe a flattop soliton
with radius R � 10 and �c � 0:76 arising after the massive
coalescence of the fermionic solitons. The width of the square
spatial domain displayed is w�;� ¼ 200.
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refractive index gradient can be obtained as documented in
Ref. [12]. On the other hand, we have also checked nu-
merically that the same qualitative result can be obtained
by using a glass lens, provided that its focal length f is at
least 10 times greater than the Rayleigh length of the input
beams, which in the case depicted in Fig. 3 corresponds to
f ¼ 5 m.

For simplicity, we have prepared the initial state with
exact solutions of Eq. (1) to reduce the excitation of linear
radiative modes. We have checked that such an initial
guess can be generated experimentally by means of the
modulational instability of a low-power probe pulse. In
fact, Fig. 4 shows the results of a numerical simulation
where we have added an initial cosine squared-type phase
distribution [see Fig. 4(a)] to a homogeneous plane wave in
order to excite a regular grid of solitons, as in Ref. [13]. As
shown in Figs. 4(b)–4(d), this allows us to control the
spatial location of the optical filaments generated during
the beam breakup due to modulational instability. The
outgoing grid of spatial solitons is depicted in Fig. 4(d).
Note its similarity with the initial state of Fig. 3.

Let us come back to the results of Fig. 3. The massive
coalescence of all the fermionic bubbles occurs after a
finite propagation distance 	 ¼ 200 (see middle snapshot
in Fig. 3), measured in units of n4k

�1
0 n�2

2 . As a result, a

unique filament structure with large radius arises, as it can
be appreciated in Fig. 3. We have checked that this soliton
is a flattop eigenstate with radial perturbations coming
from the transition process. In fact, we have estimated its
logarithmic radius to be around 2.3 and its peak density
�c � 0:76 (measured in units of n2=n4, thus corresponding
to an intensity 2:34� 1013 W=cm2), which is clearly on
the liquid light branch displayed in Fig. 2. For oxygen [7],
we have considered a propagation distance of about 13 m.
Although such a distance seems to be huge for a real
experiment, we have verified that by stretching the external
potential this distance can be realistically reduced by al-
most 1 order of magnitude. Finally, we note that the use of
pressurized O2 or air may also help to enhance the non-
linear optical response. For all these reasons, we conclude

that the demonstration of the existence of both fermionic
and liquid light and the phase transition between them
would be an affordable challenge in real experiments.
In conclusion, we have proved that common media

(O2, air) can support the propagation of solitary waves
that appear in two clearly different phases with unequal
physical properties, namely, the low-power ‘‘fermionic’’
light, satisfying an equation of state similar to that of a
degenerate gas of fermions, and the high-power ‘‘liquid’’
light, obeying the YL equation. We have then shown how a
grid of the fermionic light bubbles can be generated and
forced to merge in a liquid droplet. We think that the
possible experimental validation of our proposal could
also provide an independent way to corroborate the deep
change in the understanding of the filamentation process in
gases that was proposed in Ref. [7]. Furthermore, these
results in air pave the way for the improvement of recent
experiments on laser-induced water condensation [14],
built on top of these new robust light distributions.
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FIG. 4 (color online). Proposal for the generation of the initial
condition of Fig. 3 in experimental setups. The (a) pseudocolor
plot shows the bidimensional cosine squaredlike phase distribu-
tion to be imprinted onto the ingoing beam. We assume that the
beam is much wider than the filaments, and restrict our simula-
tion to a square domain �; � 2 ½�75; 75� where the wave front is
assumed to be homogeneous. In (b),(c) (	 ¼ 100; 200) we ob-
serve how the beam profile starts to destabilize, leading to the
formation of a grid of spatial solitons at 	 ¼ 300 [see (d)].
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