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We answer the question whether linear-optical processing of the states produced by one or multiple

imperfect single-photon sources can improve the single-photon fidelity. This processing can include

arbitrary interferometers, coherent states, feedforward, and conditioning on results of detections. We show

that without introducing multiphoton components, the single-photon fraction in any of the single-mode

states resulting from such processing cannot be made to exceed the efficiency of the best available photon

source. If multiphoton components are allowed, the single-photon fidelity cannot be increased beyond

1=2. We propose a natural general definition of the quantum-optical state efficiency, and show that it

cannot increase under linear-optical processing.
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Optical implementation of quantum information pro-
cessing and communication employs the single-photon
state as one of its primary resources [1]. There exists a
variety of methods to produce this state, both of heralded
and on-demand nature [1,2]. However, no single-photon
source is perfect. While many single-photon sources are
able to effectively suppress multiphoton components from
the output, the produced state typically has a significant
admixture of vacuum. In other words, the quantum state of
light generated by a typical single-photon source can be
approximately written in the photon number basis as

�̂ ¼ ð1� pÞj0ih0j þ pj1ih1j; (1)

where p is the efficiency of the source. In the remainder of
the Letter, we call state (1) the inefficient single-photon
state (ISPS).

In this work, we are investigating possibilities to en-
hance the efficiency of an ISPS using linear-optical (LO)
processing. This processing includes arbitrary operations
by means of LO elements (mirrors, beam splitters, etc.),
destructive measurements as well as modifications of the
LO circuit (feedforward) or postselection based on mea-
surement results. The efficiency of the output ISPS is
evaluated for the remaining undetected modes after
postselection.

LO processing is attractive because linear-optical ele-
ments and quantum-optical detectors are widely available,
inexpensive, and versatile; furthermore, they can be inte-
grated in a waveguide circuit [3]. Recent investigations
have shown that many tasks of quantum information tech-
nology can be accomplished by means of LO processing,
including quantum computation [4].

Furthermore, LO processing enables correction for
many types of errors, including those due to inefficiency
of photon sources [5,6]. However, there is always a thresh-
old efficiency below which correction is impossible, and
this correction significantly increases the resource

requirements. This naturally raises the question of whether
it is possible to separate the task of correcting the ineffi-
cient sources from the quantum information processing.
That is, if one could improve the efficiency of the single-
photon sources before encoding the quantum information,
it might significantly reduce the resource requirements.
Here we show that there is a fundamental limitation to
linear optics preventing this. All correction must take place
without increasing the efficiency at any stage.
Specifically, we give two main results, resolving long-

standing conjectures:
(1) If no two or higher photon number components are

allowed in the output mode (which is an essential require-
ment for many applications, such as quantum crypto-
graphy), the probability of the single-photon component
in the output cannot be higher than the efficiency of the
best single-photon source at the input, pmax.
(2) If we do allow multiphoton components in the output

mode, the single-photon weight therein cannot exceed the
greater of pmax and 1=2.
Both of these statements are general in that they do not

impose any restriction on the number of photon sources
available, the configuration of the LO scheme or destruc-
tive measurements involved.
These results were hypothesized in Refs. [7,8], which

provided numerical evidence andgave proofs in some special
cases. Tightness of these results has also been demonstrated.
References [7,9] provided a scheme that can increase the
single-photon probability, provided multiphoton compo-
nents are allowed in the output. This scheme worked if and
only if the initial single-photon probabilitywas less than 1=2.
In a related work [10], it was shown that if there is initial
coherence between the vacuum and single-photon compo-
nents, then the single-photon probability can be increased,
but at the expense of the coherence. For these partiallymixed
states a generalized efficiency was defined, which cannot
increase through LO processing of a single source.
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One restriction on the schemes we study is that the
measurements are destructive. If one could perform a
quantum nondestructive (nondemolition) measurement of
the number of photons, then postselecting on detection of a
single photon would improve the efficiency. However, such
measurements require nonlinearity [11], and are not per-
formed by standard photodetectors. It is possible to achieve
an effective nondemolition measurement using linear op-
tics and destructive measurements, provided that perfect
single photons are given as a resource [12]. However, we
cannot make use of this possibility because we require that
all available single-photon sources are imperfect with
quantum efficiency no higher than pmax.

Aside from the above restriction, our results are valid for
arbitrary generalized quantum measurements. This in-
cludes the case when some of the modes are not measured
at all, thus accounting for optical losses or imperfect mode
matching on beam splitters.

In general, LO processing schemes can involve feedfor-
ward, i.e., LO operations that are controlled by the results
of measurements. This is used, for example, in schemes for
linear-optical quantum computation [5]. Typically, the
controlled operations are adjusted before they act on the
photons. A schemewith such feedforward can, however, be
replaced by a scheme that is immediately prepared in its
final configuration corresponding to the set of measure-
ment results that give the largest single-photon probability
at the output [13,14]. If postselection on this set of results is
employed, the single-photon probability under this fixed
scheme will be at least as high as under the scheme with
feedforward. Therefore we can without loss of generality
eliminate feedforward from our future analysis.

In view of the above, any LO processing scheme can be
converted to the form depicted in Fig. 1 [7]. Multiple ISPSs
�̂1; . . . ; �̂M with efficiencies p1; . . . ; pM, are combined in a
linear interferometer. For added generality, we also allow
coherent states (which are readily available from a laser) as
inputs. This includes vacuum states as coherent states with
amplitude zero. All the interferometer outputs except one
are subjected to a measurement. Conditioned on a particu-
lar result of this measurement, we analyze the state in the
remaining mode.

We begin our argument by redrawing our scheme as
shown in Fig. 2. Because the efficiencies of all initial
ISPSs are not greater than pmax, they can be interpreted
as ISPSs �̂0

i of efficiency pi=pmax that have propagated

through optical attenuators of transmissivity pmax. The
coherent states j�ii can be interpreted as coherent states
of amplitudes �0

i ¼ �i=
ffiffiffiffiffiffiffiffiffiffi
pmax

p
that have been similarly

attenuated.
Now the following observation can be made. The set of

attenuators can be commuted with the interferometer
without affecting the multimode optical state before the
measurement. In other words, the scheme in Fig. 2 is equi-
valent to that in Fig. 3 [15].

To show this result, we express the propagation of the
multimode state through an attenuator (with equal loss in
all the modes) as the fictitious time evolution [16]:

d�̂

dt
¼ �½Âð�̂Þ � N̂ð�̂Þ�; (2)

where

Âð�̂Þ ¼ X
k

âk�̂â
y
k ; (3)

N̂ð�̂Þ ¼ X
k

ðâyk âk�̂þ �̂âyk âkÞ=2; (4)

are the Lindbladian superoperators. Summation is per-
formed over all optical modes with annihilation operators
âk, � is the loss coefficient such that pmax ¼ e��t0 , and t0 is
the fictitious time during which the loss channel is applied.
In writing Eq. (2) we have used the fact that the attenuation
is the same in all the modes.
The action of the interferometer can be written in the

Heisenberg picture as a unitary transformation between the

annihilation operators of the input âk and output b̂k modes:

FIG. 1. A general interferometer for processing single-photon
sources. The single-photon sources are the M states �̂1; . . . ; �̂M.
In addition, coherent states may be allowed as inputs. The modes
pass through a general interferometer, and all but one of the
output modes are detected via a measurement.

FIG. 2. An equivalent scheme to Fig. 1. All interferometer
inputs of Fig. 1 are interpreted as optical states with higher
single-photon probabilities (for inefficient photon sources) or
higher amplitudes (for coherent states) that have propagated
through identical attenuators (gray boxes) of transmissivity pmax.
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âj ¼
X
k

Ujkb̂k: (5)

Substituting this into the expression for Â, we get

Âð�̂Þ ¼ X
j

�X
k

Ujkb̂k

�
�̂

�X
l

Ujlb̂l

�y ¼ X
jkl

UjkU
�
jlb̂k�̂b̂

y
l

¼ X
kl

�klb̂k�̂b̂
y
l ¼ X

k

b̂k�̂b̂
y
k : (6)

In other words, the superoperator Â has the same expres-

sion in terms of b̂k as it does in terms of âk. The same

identity is valid for N̂. Therefore, equal attenuation of all
the modes before the interferometer is exactly equivalent to
the same attenuation after the interferometer.

Our scheme is therefore equivalent to that shown in
Fig. 3. Because the attenuators act independently on each
mode, we can without loss of generality assume the loss on
mode 1 occurs after measurement of other modes. We call
the state of mode 1 conditioned on the desired measure-
ment result, but before the attenuation, �̂0

out. The diagonal
elements of density matrices �̂0

out and �̂out are related by the
Bernoulli transformation [17]:

hnj�̂outjni ¼
X1
m¼n

pn
maxð1� pmaxÞm�n m

n

� �
hmj�̂0

outjmi: (7)

According to the above equation, if we require that state
�̂out contains no photon number components with n > 1,
the same must be true for �̂0

out. The probabilities of
1-photon components in these states are then related as

X � h1j�̂outj1i ¼ pmaxh1j�̂0
outj1i: (8)

That is, the probability of 1 photon after the loss cannot be
larger than pmax. This proves the first result presented at the
beginning of this Letter.

We prove the other result in two steps. First, we show
that it is impossible to increase the probability of a single
photon above pmax for pmax � 1=2, allowing multiphoton
components in the output. For n ¼ 1, Eq. (7) takes the
form

X ¼ pmax

X1
m¼1

ð1� pmaxÞm�1mhmj�̂0
outjmi: (9)

For pmax � 1=2, ð1� pmaxÞm�1m � 1, so

X � pmax

X1
m¼1

hmj�̂0
outjmi � pmax; (10)

as required.
Second, we show that one cannot construct a scheme

that generates the output state with the single-photon
probability X > 1=2 from ISPSs with pmax < 1=2.
Indeed, suppose such a scheme exists. But then we could
also use it with ISPSs of any efficiency Y, such that 1=2<
Y < X, by first attenuating them. However, this would lead
to efficiency improvement from Y to X, which, as we just
showed, is impossible.
The generality of our method also enables us to derive

new results that were not anticipated in previous work. In
particular, we can define a more general form of the
efficiency that may be used for states with multiphoton
components. We do this by again considering an initial
state followed by a loss channel. We can define Eð�̂Þ by

Eð�̂Þ � minfpj9�̂0 � 0 : Epð�̂0Þ ¼ �̂g; (11)

where Ep indicates the loss channel with transmission

probability p. That is, the efficiency is the minimum trans-
mission probability for a loss channel such that �̂ can be
obtained from a valid quantum state (i.e., with positive
semidefinite density operator).
This definition may be used for both single-mode and

multimode states. In the case where the state is a tensor
product of states in the individual modes, �̂ ¼ �k�̂k, the
generalized efficiency is the maximum of that for the
individual modes: Eð�̂Þ ¼ pmax � maxkðpkÞ, where pk ¼
Eð�̂kÞ. To show this, let us define for each mode the state
�̂0
k, such that Epk

ð�̂0
kÞ ¼ �̂k. Then for the states �̂0

k ¼
Epk=pmax

ð�̂0
kÞ, we have

E pmax

 O
k

�̂0
k

!
¼ O

k

�̂k ¼ �̂; (12)

which means, according to definition (11), that Eð�̂Þ �
pmax. On the other hand, for any state �̂0 satisfying
EEð�̂Þð�̂0Þ ¼ �̂, tracing over all modes except k gives a

state �̂00
k such that EEð�̂Þð�̂00

k Þ ¼ �̂k. Comparing this with

Eq. (11), we obtain 8kEð�̂Þ � pk, and thus Eð�̂Þ ¼ pmax.
By applying the procedure of commuting the loss chan-

nel with the interferometer, we find that the generalized
efficiency cannot be increased under LO processing. This
general result includes the above no-go results for improv-
ing the ISPS efficiency as particular cases. This is because
the generalized efficiency of an ISPS is identical to that
defined by Eq. (1), and for a set of ISPSs, the generalized
efficiency is the maximum of that for the individual single-
photon sources.

FIG. 3. An equivalent scheme to Fig. 2. The interferometer and
attenuators can be interchanged, as shown in the text.
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A subtlety is that, with multiphoton components, the
generalized efficiency does not necessarily equal the
single-photon probability. For coherent states, for example,
the generalized efficiency is zero, even though the single-
photon efficiency is nonzero. For the two-photon Fock
state the relation is opposite. In cases where the single-
photon probability of an ISPS is increased through LO
processing (as in Refs. [7,9]), the generalized efficiency
is not increased because multiphoton components are
introduced.

An important feature of the generalized efficiency is
that, if it is possible to interconvert between two states
using LO processing and postselection, then they must
have the same generalized efficiency. For example, con-
sider the case of partially mixed states of zero and one
photon,

�̂ ¼ ð1� pÞj0ih0j þ qj0ih1j þ q�j1ih0j þ pj1ih1j: (13)

It is shown in Ref. [10] that these states can be intercon-
verted, using LO processing and conditional measure-
ments, with ISPSs of efficiency

E0ð�̂Þ ¼ p=ð1� jqj2=pÞ: (14)

Hence the generalized efficiency Eð�̂Þ of the partially
mixed state (13) must be equal to E0ð�̂Þ [18].

Thus we find that the technique of commuting an equal-
loss channel with the interferometer enables us to resolve
two long-standing problems from previous work. We find
that the efficiency of single-photon sources cannot be
increased using linear optics and destructive conditional
measurements if it is required that the generated state
contain no multiphoton components. Even if this restric-
tion is lifted, it is not possible to increase the single-photon
probability if pmax � 1=2. We formulate a general defini-
tion of the quantum efficiency of an optical state which
cannot increase under LO processing. These results place
strong performance bounds on all linear-optical quantum
processing schemes.

Our results are perhaps surprising, because linear-
optical quantum computing is possible even with imperfect
single-photon sources, provided that their efficiency ex-
ceeds 2=3 [6]. One might expect that error correction
techniques from linear-optical quantum computing could
be used to improve the photon efficiency, but here we have
shown that is not possible. Our findings show that any
scheme for correcting the errors due to inefficient sources
must do so without increasing the actual efficiency at any
stage. This gives insight into the way that existing correc-
tion schemes work, and guidance to develop new methods
of error correction.

One possibility that our results do not rule out is cata-
lytic improvement of photon sources. That is, if there is one
source with very high efficiency, it might be possible to use
this source to improve the efficiency of multiple sources.
This is a topic for future study [19].
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