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A microscopic calculation of reaction cross sections for nucleon-nucleus scattering was performed by

coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup channels.

The particle-hole states may be regarded as doorway states through which the flux flows to more

complicated configurations, and subsequently to long-lived compound nucleus resonances. Target

excitations for 40;48Ca, 58Ni, 90Zr, and 144Sm were described in a random-phase framework using a

Skyrme functional. Reaction cross sections obtained agreed very well with experimental data and

predictions of a fitted optical potential. Couplings between inelastic states were found to be negligible,

while the pickup channels contribute significantly. For the first time observed absorptions are completely

accounted for by explicit channel coupling, for incident energies between 10 and 40 MeV.
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A quantitative description of nucleon-nucleus reactions is
crucial for a broad variety of applications, including astro-
physics, nuclear energy, radiobiology, and space science
[1,2]. A fully microscopic description of such reactions is
quite complex and resource-consuming, as one needs to
consider not only the desired outcome in an exit channel,
but also the interference and competition with all other
possible outcomes. A successful account of elastic nucleon-
nucleus scattering, for example, has to include the effects
from the excitation of nonelastic degrees of freedom, such as
collective and particle-hole excitations, transfer reactions,
etc. Formally, these nonelastic effects can be accounted for
by the projection-operator approach of Feshbach [3]. The
picture that emerges is one inwhich flux is removed from the
elastic channel by couplings to the nonelastic degrees of
freedom. An optical potential can therefore be defined [3,4]
as the effective interaction in a single-channel calculation
that contains the effects of all the other processes that occur
during collisions between nuclei. Optical potentials play a
very important role in the description of nuclear reactions.
They are extensively used to describe the interactions of
projectile and target in the entrance channel, and the interac-
tion of ejectile and residual nuclei after the reaction; they are
crucial ingredients in direct-reaction as well as statistical
(Hauser-Feshbach) calculations.

Most widely used are phenomenological optical poten-
tials fitted to reproduce experimental data sets. They have
been extremely successful for many applications involving
nuclei in the range of the fits. Unfortunately, such adjustable
potentials make strong assumptions about locality and

momentum dependence that are probably not justified. In
addition, for nuclei lying outside the range of the fits, such as
the nuclei produced at rare-isotope facilities, in the r pro-
cess, and in advanced reactor applications, this can lead to
unquantifiable uncertainties. To achieve a better understand-
ing of nuclear reactions and structure it is important to
calculate optical potentials by first-principle methods.
Within microscopic reaction theory, an optical potential is

comprised of two components. The first is a real bare poten-
tial; the diagonal potential within the elastic channel, which
is generally obtained by folding the nucleon distributions of
both nuclei with a nucleon-nucleon effective interaction. The
second is a complex dynamic polarization potential which
arises from couplings to inelastic states. The resulting optical
potential is composed of an imaginary potential and a real
part usually slightly different from the bare potential. The
former gives rise to absorption of flux from the elastic
channel to the other reaction channels, and is hence directly
connected with observed reaction cross sections.
Several attempts have been made to generate optical

potentials from microscopic approaches. Some have used
the so-called nuclear matter approach [5], which provides
accurate results at nucleon energies * 50 MeV [6].
Recently, new methods based on self-energy theory have
been implemented [7], and new calculations, which
combine a nuclear matter approach and Hartree-
Fock-Bogoliubov (HFB) mean field structure model, pro-
vide encouraging results for neutron scattering below
15 MeV [8]. Earlier attempts used the nuclear structure
approach, which is more suitable at energies below
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50 MeV [9], and calculated second-order diagrams using
particle-hole propagators in the random-phase approxima-
tion (RPA) [9–12]. However, these were not able to fully
explain observed absorption: e.g., in Ref. [11], the couplings
could account only for � 44% of the nucleon-nucleus ab-
sorption and, in Ref. [12], only for� 71% including charge
exchange.

In this Letter, we report on the first major step towards
achieving a complete microscopic calculation of the reac-
tion cross sections for both neutron- and proton-induced
reactions on a variety of medium-mass targets. A summary
of our results for protons on 40;48Ca and 58Ni is given in
Fig. 1, where our best predictions are the solid lines. The
other curves will be described below, where we discuss our
method in more detail.

Our calculations aim to obtain the reaction cross sec-
tions of all the open channels that can be reached in one
step from elastic scattering. We then use a doorway ap-
proximation, which takes the total flux leaving the elastic
channel to all possible first-order channels to be indepen-
dent of what happens afterwards: a nucleon later might

escape as a free nucleon, the flux might equilibriate to
compound-nuclear resonances, etc.
To generate sets of excited states, we use RPA and qua-

siparticle RPA (QRPA) structure models for finite nuclei,
which start from HFB structure models based on energy-
density functionals. For each excited state, we calculate the
one-body transition density and corresponding transition
potential by the methods of [13,14], which we use within
large coupled-channels calculations. In addition to inelastic
excitations, we also include couplings to pickup channels.
To obtain the initially occupied proton and neutron

levels in a nucleus, we use the Skryme energy-density
functional SLy4 ([15] Table 1), a parametrization designed
to describe systems with arbitrary neutron excess, from
stable to neutron matter, by improving isotopic properties,
which overcomes deficiencies of other interactions away
from the stability line. A HFB calculation gives the particle
and hole levels of a given nucleus and fixes the particle-
hole basis states for generating excited states within the
framework of (Q)RPA, thus accounting for correlations
caused by the residual interactions within the target.
Our scattering effective nucleon-nucleon interaction is of

Gaussian shape, with parameters matched to the volume
integral and rms radius of the M3Y interaction at 40 MeV;
it includes a knock-on exchange correction [16]. In mo-

mentum space, the central effective interaction is vTðqÞ ¼
VT
0 ð�=�2

TÞ3=2e�q2=ð2�T Þ2 , with V0
0 ¼ �24:1921 MeV and

�0 ¼ 0:7180 fm�1 for the isoscalar part of the interaction
and V1

0 ¼ 11:3221 MeV and �1 ¼ 0:7036 fm�1 for the

isovector component. We do not include any imaginary
part in this effective interaction, as our aim is to include
all nonelastic excitations explicitly in our model. We con-
volute vTðqÞ with the transition densities to generate the
configuration-space transition potentials. The bare potential
in the elastic channel is the single-folded potential using the
ground-state density from the HFB calculation. For sim-
plicity, this potential was also used for all excited states.
To explore the relative importance of the various con-

tributions to the reaction cross section, we carried out a
series of calculations:
(1) Inelastic coupled-channels calculations will be

shown for reactions involving protons and neutrons
scattered by the nuclei 40Ca, 48Ca, 58Ni, 90Zr, and 144Sm,
coupling the ground state to all levels with excitation
energy (E�) lying below some limit, according to the
QRPAmodel. The QRPA states above the particle emission
threshold are used to approximate exact scattering waves.
Recent studies have shown that such wave functions con-
tain large density distributions outside the nuclear radius
[17]. When used in reaction calculations they accurately
represent the continuum [18]. Thus, processes containing
one nucleon in the continuum (plus the inelastically scat-
tered projectile) are included in our model.
(2) Additional couplings between excited states were

considered as predicted by the RPA model. These cou-
plings, however, were found to be negligible for scattering
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FIG. 1 (color online). Total reaction cross section as a function
of the incident energy for pþ 40Ca, pþ 48Ca, and pþ 58Ni.
The results are shown for couplings to the inelastic states lying
below 30 MeV (dashed lines), to the inelastic and transfer
channels (dash-dotted lines) and to the inelastic and transfer
channels with nonorthogonality corrections (solid lines). The
Koning-Delaroche [22] optical model calculations are shown as
short-dashed lines. The lines serve as guides to the eye as
calculations were performed only for Elab ¼ 10, 20, 30, and
40 MeV. Data from Refs. [25–30].
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energies above 10 MeV, allowing us to disregard them in
the subsequent calculations.

(3) Consideration of a finite-range interaction in a HFB
description of the target structure. For reactions of nucleons
scattered by 90Zr, the reaction cross section results using the
QRPA model with the SLy4 force were found to be practi-
cally equivalent to the results found using RPA states and
transitions with the Gogny D1S force [19]. This was ob-
served despite the proton pairing gap of 1.2 MeVof 90Zr.

(4) Inclusion of one-nucleon pickup channels: pickup
channels play an important role in nucleon-nucleus scatter-
ing [20,21]. Coupled reaction channels (CRC) calculations
were performed, including all the channels for the formation
of a deuteron, picking up the appropriate nucleon from
occupied levels in the target. For transfers, we approximate
the HFB target states by bound single-particle states in a
Woods-Saxon potential, with the radii fitted to reproduce the
volume radii and Fermi energy obtained by the HFB calcu-
lations. The volume diffuseness and spin-orbit parameters
were taken fromKoning-Delaroche optical potentials [22] at
Elab ¼ 0, with spin-orbit radii adjusted by the same factor
used to fit the volume part to HFB radii. To overcome
numerical limitations, we coupled explicitly only to the
transfer channels, incorporating all inelastic couplings in
the inelastic optical potential already calculated in (1).

CRC calculations require, in addition to the scattering
potentials in the incoming channel, a scattering potential
between the deuteron and the remaining target. We adopted
the Johnson-Soper [23] prescription as it includes the
effects of deuteron breakup in adiabatic (sudden) approxi-
mation. In this prescription, the deuteron potential is the
sum of the individual neutron and proton potentials with
the target. For the real parts we used the diagonal transition
potentials of the corresponding nucleon-nucleus reaction
and, for the imaginary parts, the sum of the imaginary parts
of the Koning-Delaroche [22] optical potential for protons
and neutrons. That is, fitted parameters are used in the
imaginary part of the deuteron potential, while we leave
for future work to calculate deuteron and nuclear potentials
self-consistently.

To assess the success of our large-scale coupled-
channels approach, we compare the calculated reaction
cross section to that obtained by one of the best available
phenomenological optical potentials, henceforth referred
to as �OM

R [22].
We examined the convergence with respect to maximum

excitation energy, and found that convergence of the inelas-
tic calculations requires coupling of all excited levels below
the scattering energy (i.e., all open channels). This behavior
is observed for each partial wave as well as at all energies, as
is illustrated for pþ 40Ca in Figs. 2 and 3, respectively.

Although the reaction cross section increases with the
number of coupled states, to the limit where all open
channels are coupled, Fig. 3 shows that these inelastic
couplings account only for a small fraction (� 23%
at Elab ¼ 30 MeV) of �OM

R . However, after including

couplings to the pickup channels through the CRC calcu-
lations, a large increment is found, approaching �OM

R and
the experimental data, as can be seen in Fig. 1. An even
better agreement can be obtained after we include the
nonorthogonality terms ([24] p. 226) in the CRC calcula-
tions, also shown in Fig. 1. This correction arises because
at small radii the deuteron bound state is not orthogonal to
bound states occupied in the target.
This work focuses on reaction cross sections, which test

the modulus of the S-matrix elements. Additional insights
can be gained, e.g., from elastic angular distributions.
Preliminary calculations of these give reasonable agree-
ment with measured cross sections.
In Fig. 4 we present the reaction cross sections obtained

for nucleons scattered by the nuclei 40;48Ca, 58Ni, 90Zr, and
144Sm at an incident energy of 30 MeV, as a function of the
area of the target. The absorption is shown relative to the
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FIG. 3 (color online). Total reaction cross section as a function
of the incident energy for the reaction pþ 40Ca, for the different
inelastic calculations. The short-dashed line shows the results
using the Koning-Delaroche [22] optical potential. The lines
serve as guides to the eye as calculations were performed only
for Elab ¼ 10, 20, 30 and 40 MeV.
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FIG. 2 (color online). Reaction cross section as a function of
the partial wave for the reaction pþ 40Ca at Elab ¼ 20 MeV.
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reaction cross section of a black sphere, which is approxi-
mately the geometrical area of the target. It can be seen
again that, despite the important contribution of all inelas-
tic couplings to the reaction cross section, a large amount
of absorption is due to the pickup channels and the corre-
sponding nonorthogonality corrections. Explicitly consid-
ering such couplings enabled us to account for practically
all of the nonelastic cross sections in the studied reactions.

In summary, we have calculated the reaction cross sec-
tions for nucleon-induced reactions on nuclei 40;48Ca, 58Ni,
90Zr, and 144Sm by explicitly calculating the couplings to
all the doorway transfer and (Q)RPA inelastic channels.
We found that inelastic convergence is achieved when all
open channels are coupled. While inelastic couplings ac-
count for an important part of the reaction cross section,
most contributions come from couplings to the deuteron
pickup channel, in which case the nonorthogonality terms
are significant. We obtain reaction cross sections that are in
good agreement with phenomenological optical model
results and experimental data. Such results, using the door-
way approximation, are an important milestone. Future
work on couplings between different types of nonelastic
processes will calculate higher-order corrections.

This work represents the first complete microscopic
calculation that uses basic interactions between nucleons
within the nuclei to predict reaction observables for inci-
dent energy as low as 10 MeV. Using state-of-the-art
nuclear structure models coupled with large-scale reaction

computations allowed the accurate prediction of measur-
able quantities. This will serve as basis for future fully-
consistent ab initio developments for a range of nuclei
including unstable species.
This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National
Laboratory under Contract No. DE-AC52-07NA27344,
and under SciDAC Contract No. DE-FC02-07ER41457.
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FIG. 4 (color online). Normalized total reaction cross section
at Elab ¼ 30 MeV as a function of the area of the targets 40;48Ca,
58Ni, 90Zr, and 144Sm, with r0 ¼ 1:2 fm. The lines have the same
meanings as in Fig. 1 and the open symbols are the calculations
for the different target nuclei studied. Filled symbols are experi-
mental data from Refs. [26,28–30].
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