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The scattering of a neutrino on atomic electrons is considered in the situation where the energy

transferred to the electrons is comparable to the characteristic atomic energies, as relevant to the current

experimental search for the neutrino magnetic moment. The process is induced by the standard

electroweak interaction as well as by the possible neutrino magnetic moment. Quantum-mechanical

sum rules are derived for the inclusive cross section at a fixed energy deposited in the atomic system, and it

is shown that the differential over the energy transfer cross section is given, modulo very small

corrections, by the same expression as for free electrons, once all possible final states of the electronic

system are taken into account. Thus, the atomic effects effectively cancel in the inclusive process.
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The magnetic moments of neutrinos in the standard
model are proportional to neutrino masses [1] and are
very small: �� & 10�20 �B with �B ¼ e=ð2meÞ being
the Bohr magneton. Thus, any evidence of a significantly
larger neutrino magnetic moment (NMM) would undoubt-
edly reveal effects of new physics.

The current experimental limits for reactor (anti)neutri-
nos are provided by the dedicated experiments TEXONO
[2] and GEMMA [3,4] with the latest upper limit [4] being
�� < 3:2� 10�11 �B. Both experiments measure the en-
ergy T deposited in ultra low background Germanium
crystal detectors exposed to neutrino flux from a reactor.
In a scattering of neutrino with energy E� off a free
electron the energy T is the kinetic energy of the recoiling
electron, and the differential over T cross section is given
by the incoherent sum of the scattering due to the NMM
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and a constant in T (at T � E�) contribution from the
standard electroweak interaction
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(A compilation and discussion can be found, e.g., in
Ref. [5].)

Because of the 1=T singularity of the electromagnetic
scattering, an improvement of the upper bound on NMM
requires going down to a lower threshold in the energy
deposited in the detector, and the most recent experiments
have this threshold in the range of a few keV. Such energies
however are comparable to the characteristic atomic ener-
gies "0 in Ge, for which a representative value can be that
of the K� line 9.89 keV. Clearly, in this situation it is
legitimate to question applicability of the formulas (1) and

(2) derived for free electrons, and atomic effects should be
taken into account. In particular it has been argued [6] that
the atomic effects in Ge very significantly enhance the
NMM scattering cross section in the keV energy range.
The present Letter revisits the issue of the atomic effects

on the neutrino scattering. It will be shown that in the
relevant range of low excitation energy T the cross section
summed over the final states of the electrons is governed by
quantum-mechanical sum rules and the inclusive cross
section per atomic electron is essentially given by unmodi-
fied formulas in the equations (1) and (2).
We start with considering in detail the more interesting

case of the electromagnetic scattering due to NMM, and
then extend the treatment to the standard electroweak
process. Let k� and k0� be the four-momenta of the initial

and the final neutrino, so that q ¼ k� k0 is the four-
momentum transferred to the atomic system, q ¼ ðT; ~qÞ.
It is assumed that T is much less than the energy E� of the
incoming neutrino, so that E0

� � E�, and also that T is
much smaller than the electron mass, T � me, so that the
electrons in the atom and in the scattering can be treated
within nonrelativistic quantum mechanics (This is quite
similar to the treatment of the inelastic scattering of fast
electrons on atoms as can be found, e.g., in the textbook
[7]). One can also notice that in the energy range of interest
for current experiments the condition T � "0me=M is
satisfied, which allows us to assume that no energy is spent
on the recoil of the atom as a whole including its nucleus
with the mass M. The nucleus is thus considered to be
infinitely massive and at rest, so that the interaction with it
makes no contribution to the scattering at the energy trans-
fer T, and only the interaction with the atomic electrons
is of relevance. It is also implied that T is above the
ionization threshold, so that it is the processes with emis-
sion of electron(s) in the continuum that contribute to the
cross section, rather than just an excitation of discreet
atomic levels.
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The NMM interaction with the electromagnetic field
A�ðqÞ of the electrons is described by the standard term

in the Lagrangian

LNMM ¼ ��ð ��ðk0Þ����ðkÞÞq�A�: (3)

In the leading nonrelativistic order the electrons only cre-
ate a Coulomb field, whose potential A0 is given by

A0ð ~qÞ ¼
ffiffiffiffiffiffiffiffiffiffi
4��

p
�ð ~qÞ= ~q2 with �ð ~qÞ being the Fourier trans-

form of the electron number density operator

�ð ~qÞ ¼ XZ
a¼1

expði ~q � ~raÞ; (4)

and the summation runs over the positions ~ra of all the
Z electrons in the atom. It is a straightforward exercise to
find the cross section for scattering on the ground state of
the atom due to the interaction (3) in the form
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�ðT � En þ E0Þjhnj�ð ~qÞj0ij2; (5)

where Q2 ¼ ~q2, the sum runs over all the states jni of the
electron system with j0i being the ground state, and En

stands for the energy of the corresponding state. One can
readily reproduce the 1=T term (Clearly the 1=E� term
in Eq. (1) is neglected in the considered approximation.) in
Eq. (1) for the scattering on free electron by noticing that
in this case the sum in Eq. (5) contains only one term
(corresponding to a free electron with momentum ~q) and
is equal to �ðT �Q2=2meÞ, so that the integration over Q2

is trivial.
One can further notice that the sum in Eq. (5) is propor-

tional to Q2 at low momentum transfer, i.e., when j ~qj is
smaller than the characteristic momenta of the electrons in
the atom, Q2 � 2me"0. In this limit the exponent in the
expression (4) can be expanded in the Taylor series, and the
unit term gives no contribution due to the orthogonality of
the ground and excited states. Keeping the first nonvanish-
ing term one finds

d2�ð�Þ
dTdQ2

¼ 4���2
�

X
n

�ðT � En þ E0Þjhnjdxj0ij2; (6)

where dx is the projection on the direction of ~q of the

dipole operator ~d ¼ P
a ~ra. The formula in Eq. (6) can be

used at Q2 ¼ T2, i.e., for the on-shell photon, to relate the
discussed cross section to that of the photoelectric effect
for a real photon with energy T : �	ðTÞ. The latter cross

section is determined by the same sum over the dipole
matrix elements (see, e.g., in the textbook [8]), so that one
finds [6]
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(A general similar relation between the neutrino and pho-
ton scattering on atoms can be also found in Refs. [9,10]).

The relation (7) is however of little help in finding a
reliable approximation for the integral over Q2 that is
necessary for determining the experimentally measured
full inclusive cross section d�ð�Þ=dT. The reason is that

the integral receives contribution from the regions of Q2

where the photon momentum is comparable to the charac-
teristic atomic momenta as well as from the overlapping
at T � "0 region where Q2 � 2meT. At those Q2 the
dipole approximation is no longer valid (An integration
in Eq. (7) over all kinematically allowed values of Q2

i.e. up toQ2 � 4E2
� without introducing a form factor leads

to the claim [6] of a giant enhancement of the cross section
by atomic effects, but is clearly unjustified since the sum in
Eq. (5) rapidly falls off at large Q2. The relation (7)
however can be of use in situations where E� is small in
the scale of the characteristic size of the target system, such
as in the problem of deuteron splitting by reactor or solar
neutrinos [11].).
The full integral of the expression in Eq. (5) overQ2 can

be found using a quantum-mechanical sum rule. Indeed,
the sum in that expression can be written in terms of the
imaginary part the function RðT;Q2Þ:

X
n

�ðT � En þ E0Þjhnj�ð ~qÞj0ij2 ¼ 1

�
ImRðT;Q2Þ; (8)

with

RðT;Q2Þ ¼ X
n

1

T � En þ E0 � i

jhnj�ð ~qÞj0ij2

¼ h0j�ð� ~qÞ 1

T �H þ E0 � i

�ð ~qÞj0i; (9)

where i
 is, as usually, an infinitesimal shift from the
the real axis, and H is the full Hamiltonian for the
atomic electrons. At a fixed T and generally complex
Q2 the function RðT;Q2Þ is an analytic function of Q2

with a cut along the positive real axis, and this function
is manifestly real at real negative Q2, so that RðT; z�Þ ¼
R�ðT; zÞ, and its imaginary part on the cut vanishes
at Q2 ! 0, as is explained in the above discussion leading
to Eq. (6). At large Q2 this function is determined by
the final states of electrons with large momenta, where
the atomic effects are negligible, so that it falls at large
jQ2j as

RðT;Q2Þ ! �Z
2me

Q2
; ðjQ2j ! 1Þ: (10)

One thus concludes that the function R satisfies the disper-
sion relation with no subtractions

RðT; P2Þ ¼ 1

�

Z 1

0

ImRðT;Q2Þ
Q2 � P2 � i


dQ2: (11)

Consider now the limitP2 ! 0. The operator �ð ~pÞ at p ! 0
becomes a unit operator for each electron, so that only the
ground state contributes to the sum in Eq. (9) and one finds

PRL 105, 201801 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 NOVEMBER 2010

201801-2



RðT; 0Þ ¼ Z=T. Upon substituting P2 ! 0, the dispersion
relation (11) thus yields

1

�

Z 1

0
ImRðT;Q2ÞdQ

2

Q2
¼ Z

T
: (12)

Given the relation (8), this integral is almost exactly what
one needs to calculate the inclusive differential cross section
d�ð�Þ=dT, except that in the latter calculation the integral

runs within the kinematical limits forQ2, i.e., fromQ2 ¼ T2

to Q2 � 4E2
�, rather than from zero to infinity. By

our assumptions the neutrino energy is much larger than
either the atomic scale or T, so that within our approxima-
tion the scale E2

� in the upper limit is indistinguishable from
infinity. As to the lower limit, the difference between the
two integrals is obviously given by the integral fromQ2 ¼ 0
to Q2 ¼ T2. In this range (and at T � "0) one can safely
use the dipole approximation described by Eq. (6) and
relate the integrand in Eq. (12) to the photoelectric cross
section as described by Eq. (7). Then the relative contribu-
tion of this low Q2 region to the sum rule (12) can be
estimated as

�ð�Þ 	 T

�Z

Z T2

0
ImRðT;Q2Þ dQ

2

Q2
¼ �	ðTÞT2

4�2�Z
(13)

According to the Tables [12], in Ge the product �	ðTÞT2

reaches values of order 106 barn� keV2 at T in the range of
1–20 keV with the maximum at T � 14 KeV, where this
product is approximately 2:5� 106 barn� keV2 �
6� 10�3. This puts the relative contribution of the low
Q2 region in the integral (12) for Ge at �ð�Þ < 0:7�
10�3. Thus, up to a small correction, the inclusive cross
section is determined by the sum rule (12) and is given (per
electron) by the 1=T term in the expression (1) derived for a
free electron (It can be also noticed that both small correc-
tions due to the kinematical restrictions are negative, so that
the full integral in Eq. (12) in fact provides an upper bound
on d�ð�Þ=dT).

Proceeding to discussion of the standard electroweak
scattering, it can be noted that similarly to Eq. (5) the
double differential cross section can be readily expressed
in terms of the imaginary part of the function RðT;Q2Þ as

d2�EW

dTdQ2
¼ G2

F

4�
ð1þ 4sin2�W þ 8sin4�WÞ

�
1

�
ImRðT;Q2Þ

�
;

(14)

so that the function ImRðT;Q2Þ enters with a constant,
rather than Q�2, weight, as it should be for a pointlike
interaction. The sum rule for the full integral of this func-
tion over Q2 immediately follows from considering the
dispersion relation (11) at P2 ! �1 and comparing it
with the asymptotic expression in Eq. (10). In this way
one finds

1

�

Z 1

0
ImRðT;Q2ÞdQ2 ¼ 2Zme: (15)

In this case the contribution of the ‘‘extra’’ integration
region of Q2 < T2 near the lower limit contains an extra
factor of (T=me) on top of the small relative value
estimated for the �ð�Þ and can safely be neglected. One
thus can readily perform the integration of the expression
in Eq. (14) over the kinematical range of Q2 and arrive
at the same formula for the inclusive differential cross
section per electron d�EW=dT as given by the free electron
relation (2).
The existence of the simple expressions for the integrals

in the sum rules (12) and (15) is quite specific to the weight
functions Q�2 and Q0 in those integrals, and generally one
would not expect similarly simple relations for other
weight factors. (One such ‘‘other’’ weight function Q�4

appears in the well known case of ionization by fast
charged particles [7].) The origin of the sum rules (12) and
(15) with the respective weight functions can be somewhat
clarified by considering a simple example of scattering on
the ground state of one electron moving in a spherically
symmetric potential VðrÞ. The Hamiltonian for the electron
thus has the form Hð ~p; ~rÞ ¼ ~p2=2me þ VðrÞ, and the func-
tion RðT;Q2Þ can be written as

RðT;Q2Þ ¼ h0je�i ~q�~r½T�Hð ~p; ~rÞþE0
�1ei ~q� ~rj0i
¼ h0j½T�Hð ~pþ ~q; ~rÞþE0
�1j0i

¼
�
0

��������
�
T� ~q2

2me

� ~p � ~q
me

�Hð ~p; ~rÞþE0

��1
��������0

�
;

(16)

where the infinitesimal shift T ! T � i
 is suppressed for
brevity.
Consider now a formal expansion of the latter expres-

sion in inverse powers of ðT �Q2=2meÞ and consider first
the resulting terms containing powers of ( ~p � ~q). Clearly,
the terms with odd powers of this scalar product vanish
upon averaging due to parity. The terms with even powers
after averaging over the state j0i result in expressions of the
generic form

ðQ2Þu
ðT � Q2

2me
Þw �u;w (17)

with�u;w being the coefficients arising from the averaging

of the operators depending on even powers of ~p and ~r in the
corresponding terms of the expansion. It is important that
the integer powers u and w in the expression (17) satisfy
the inequality

w � 2uþ 1: (18)

Using the formula
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which gives zero at w � sþ 2 and both s and w being
integer, one can readily see that, due to the condition (18),
all the nontrivial terms of the expansion in ( ~p � ~q) give no
contribution to the integrals in the l.h.s. of the Eqs. (12) and
(15). We thus conclude that for the purpose of calculating
the integrals in Eqs. (12) and (15) the expression in Eq. (16)
can be replaced by a much simpler one, where the product
( ~p � ~q) is omitted:�

0

��������
�
T � ~q2

2me

�Hð ~p; ~rÞ þ E0 � i


��1
��������0

�

¼
�
T � Q2

2me

� i


��1
; (20)

which immediately results in the integrals satisfying the
sum rules (12) and (15).

The one electron example illustrates the reason for the
importance of the specific weight factors in the considered
here integrals relevant to the neutrino scattering: for weight
functions with larger positive powers of Q2 some terms of
the expansion in ( ~p � ~q) give a nonzero contribution, while
for higher negative powers of Q2, as in the ionization by
charged particles, the integrals are generally divergent at the
lower limit (The latter divergence is dominated by the Q2

behavior of ImRðT;Q2Þ at lowQ2, which, as discussed, can
be expressed in terms of the photoelectric cross section.).

As a general remark, it can be noticed that the discussed
here treatment of the inclusive scattering on the atom is in a
close analogy with the well developed approach to the deep
inelastic scattering (DIS). However the nonrelativistic dy-
namics of the target brings a great simplification, and it is
easier to directly derive the necessary sum rules using

quantum mechanics, rather than by fully using the analogy
with similar relations in DIS. As discussed here, the de-
rived in this way sum rules (12) and (15) determine
that both for the hypothetical NMM interaction and
for the standard electroweak one the inclusive differential
in T cross section per electron is essentially not affected by
the atomic effects down to quite low values of the energy
transfer T, well within the range of interest for the current
neutrino experiments.
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