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This Letter proposes and analyzes a new method for quantum state estimation, called hedged maximum
likelihood (HMLE). HMLE is a quantum version of Lidstone’s law, also known as the “add 8 rule. A
straightforward modification of maximum likelihood estimation (MLE), it can be used as a plug-in
replacement for MLE. The HMLE estimate is a strictly positive density matrix, slightly less likely than the
ML estimate, but with much better behavior for predictive tasks. Single-qubit numerics indicate that
HMLE beats MLE, according to several metrics, for nearly all “true” states. For nearly pure states, MLE

does slightly better, but neither method is optimal.
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Quantum state estimation is a basic task in quantum
information science [1], simple to describe but hard to do
right. The estimator gets N independently and identically
prepared quantum systems, performs measurements on
them, analyzes the data, and reports a single-system den-
sity matrix p. The goal is to report the most “‘accurate”
answer possible. What this means is debatable. I adopt
three common assumptions: (i) we have N copies of an
unknown ““true” state p; (ii) the goal is to get p as close as
possible to p, according to some metric d(p, p); and
(iii)) we are concerned with average (over measurement
outcomes) performance. I will not consider how to choose
a measurement, seeking instead a protocol that works well
for all measurements.

The current standard, maximum likelihood estimation
(MLE) [2-5], tends to report rank-deficient estimates
with zero eigenvalues [6]. Those eigenvalues represent
probabilities. A zero probability indicates extraordinary
confidence—confidence that the data do not support, and
which can be catastrophic if used for predictive tasks.

This Letter suggests an alternative, hedged maximum
likelihood (HMLE), which can be used as a plug-in sub-
stitute for MLE. The modification consists, in its entirety,
of the following rule. Replace the standard likelihood
function L(p) = Pr(observed data|p) with the product of
L(p) and a “hedging function”

h(p) = det(p)P, (D

where det(-) is the determinant, and B8 = 1 is a positive
constant chosen by the estimator. The rest of this Letter
explains, derives, and analyzes this rule.

Background —HMLE generalizes a classical rule for
probability estimation called “add B,” also known as
Lidstone’s law [7,8]. Suppose we observe N samples
from an unknown distribution p = {p, ... px}, and see n;
“k”s. What probabilities p should we assign for the next
sample? The likelihood, L(p) = [Tp;*. is maximized by
the natural and obvious estimate
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But if k& has not yet been observed, n; = 0, and MLE
assigns p; = 0. This is fine if p; really is zero, but p;
may well be positive but small. If so, the consequences of
assigning p;, = 0 depend on what the estimate is used for.
When it is used for predictive tasks, such as data compres-
sion or gambling [9,10], they may be catastrophic.

Compression and gambling define operational interpre-
tations of p. Compressors seek to shorten strings reversibly,
by replacing each instance of k with a [binary] code word
wy. Code words should (on average) require less space
than the original symbols, but their lengths are constrained
by the Kraft-McMillan inequality, ¥ ,27'enethtv) <1,
Gamblers seek to grow their bankroll as rapidly as possible
(in expectation), by betting it on the possible events {k}.
In a useful and widely studied model based on roulette or
horse racing (see [9]), money bet on the event that occurs
(e.g., the winning horse) is multiplied by a constant C,
while that allocated to other events is lost [11].

The natural measure of error for both tasks is relative
entropy. If p are the true probabilities and p are estimates,
then p’s entropy, H(p) = —3 ; pi logpy, is the unavoidable
cost of p’s randomness, while the additional cost of error is
given by relative entropy,

D(plip) = D pillogpy — logpy). 3)
k

The gambler’s optimal expected rate of gain is
(n) =(0)e"loeC~H®) " achijeved (uniquely) by betting a
fraction p; of his bankroll on outcome k. Similarly, the
compressor’s minimum expected output length is L(n) =
nH(p), achieved (uniquely) by replacing k with a code
word of length — logp,. But if they act based on p # p,
then these quantities grow instead as

(n) =(0)enllogC—H@)~D(plIp)] 4)

L = n[H(p) + D(pllp)]. 5)
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Setting p, = O thus implies extreme strategies for gam-
bling (bet everything against k) and data compression
(map k to an infinitely long code word). If the next letter
is k, the gambler loses his entire bankroll irrevocably, and
the compressor’s output becomes undecodable (for there is
no finite code word to assign).

“Add B avoids these catastrophes by hedging against
as-yet-unseen possibilities. It assigns probabilities

L mtB
P NtKB (6)

The lowest probability that can be assigned is N%(B ~ %

Like Eq. (2), this rule has a statistical derivation. It is the
Bayes estimator (i.e., it minimizes expected cost) for a
relative entropy cost function and a Dirichlet- 3 prior

Py(p)dp = npf_ldpk- (7
k

Dirichlet priors include the “flat” Lebesgue measure
(B = 1), and Jeffreys’ prior (8 = %). Given any prior, we
can minimize expected relative entropy by (1) updating the
prior via Bayes’ rule, and (2) reporting its mean value. For
the Dirichlet- 3 prior, this gives the “add 8’ rule. But the
“add B rule is not intrinsically Bayesian. A naive esti-
mator following Eq. (2) can simulate it by adding S
dummy observations of each letter k. This yields new
frequencies {n; + B} and a total of N + K observations.
Since L(p) = Pr({n;}Ip) = [Ty p}*, the dummy observa-
tions yield a hedged likelihood function

Lip) = [T = (nnf)ﬁ(m, ®)
k k

whose maximum value is achieved by Eq. (6). When S is
not an integer, the hedged likelihood [Eq. (8)] remains well
defined, and the “‘add B rule still maximizes it.
Quantum hedging.—The quantum analogue of a distri-
bution p is a d X d density matrix p. It cannot be observed
directly; observing a sample of p requires choosing a
particular measurement M [12]. M is represented by a
positive operator valued measure (POVM), a set of positive
operators {E;} summing to 1, which determine the proba-

bility of outcome ““i” as

Pr(i) = Tr{pE;]. 9)

Inferring p, from the observed frequencies {n,}, is the
central problem of quantum state estimation.

The simplest procedure is linear inversion tomo-
graphy [13], which assumes Eq. (2) and inverts Born’s
rule [Eq. (9)] to get an estimate P, satisfying [14]

ni

Tr[pomoEil = N fori=1,...,m. (10)
Often, p,,me has negative eigenvalues—which is awkward,
for they represent probabilities. Linear inversion ignores
the shape of state space: to fit data from a single POVM

M, it happily assigns negative probabilities for unper-
formed measurements.

MLE [2] remedies this problem, assigning the p that
maximizes the likelihood,

L(p) = Pr({nlp) = [TTelpE]". (11)

Maximizing over all trace-1 Hermitian matrices yields
Promos DUt Testricting to p = 0 yields a non-negative Py k-

However, pyy g can still assign zero probabilities—just
as in Eq. (2). If piomo 1S negative, pyyg will have a zero
eigenvalue [6]. Moreover, quantum MLE usually assigns
zero probability to a measurement outcome | )| that
is not in M, and could never have been observed, whereas
classically p;, = 0 only when k has been given N chances
to appear and (so far) has not. So although pyn g may be the
right estimator for some task, its zero eigenvalues are
implausibly and (for predictive tasks like gambling and
compression—see [15]) catastrophically overconfident.
Prediction demands a hedged estimator.

Bayesian mean estimation (BME) is hedged, and with
suitable priors has extremely good predictive behavior [6].
But quantum BME is computationally formidable, with no
known closed-form solutions. This is unfortunate, for
Bayes estimation of classical probabilities works very well.
They yield “add B rules when applied to Dirichlet-£3
priors, which are well motivated. Jeffreys’ prior (8 = 5
yields estimators that are asymptotically optimal (by the
minimax criterion) for data compression [19], Krichevskiy
showed that “add 0.50922...” outperforms all other rules
for predicting the next event [20], and Braess ef al. [21]
pointed out that 8 = 1 works well because large-N behav-
ior depends only weakly on .

This suggests adapting “add 8’ to quantum state esti-
mation. Obvious methods like dummy counts do not work.
If we estimate a qubit source by measuring o, o, and o,
10 times each, and (by unlikely chance) all the outcomes are
+1, then p,m, 1S quite negative. pyy g is the projector onto
its largest eigenvector. Adding 8 = 1 dummy counts has no
effect: piomo remains negative, and Py g is unchanged.

Dummy data work classically because only K different
events exist; dummy observations rule out p, =0 for
any event. A quantum state assigns probabilities to infi-
nitely many different measurement outcomes, and a finite
set of dummy observations cannot bound all of them away
from zero.

So HMLE modifies £ directly, multiplying it by a
unitarily invariant hedging function [Eq. (1)] independent
of M. This is directly analogous to the effect of dummy
counts in Eq. (8), because det(p) is the product of p’s
eigenvalues. Hedging penalizes small probabilities, steer-
ing the maximum of L/(+) away from boundaries. When
a single basis is measured, HMLE reproduces “add S8~
exactly: the HMLE estimate is

. n,+ B
pH—gﬁj?ﬁmm. (12)
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Equation (1) is the only measurement-independent smooth
modification of L(p) that yields “add B for every basis
(see Appendix B of [22]).

Performance.—The point of HMLE is to give more
accurate estimates than MLE. Predictive tasks (e.g.,
compression or gambling) suggest quantum relative en-
tropy, D(p|p) = Trplogp — Trplogp, as a measure of
inaccuracy.

Evaluating MLE this way is difficult, for if p is rank
deficient on p’s support, then D(p||p) = 0. The expected
value of D(p|pyvig) is always infinite, for measurement
results yielding a rank-deficient py;g can always occur.
We can compare different amounts of hedging. Figure 1
shows relative-entropy error for g = 1072 10"",1, ap-
plied to a single qubit measured N = 10, 10%, 10° times
in each of the Pauli bases. The error depends on p, most

strongly on its radial coordinate r = /(1 + Trp?)/2. For
highly mixed states (1 — 72 > 4/3/N), MLE rarely yields
rank-deficient estimates, and accuracy increases slowly
with 8. For slightly mixed states (1 — r* = \/3/_N), DMLE
is often rank deficient, and accuracy improves dramatically
with B, up to B =~ 1/2. Nearly pure states (1 — > <
J3/_N ) display unexpected and complex behavior. A very
small and N-dependent amount of hedging (Bopima =
1/2+/N) is optimal; further hedging decreases accuracy
for nearly pure states.

Other error metrics include Euclidean distance

[WTrl(p — p)*]1, infidelity [1 — (Try/\/po./p)*], and trace
distance (Tr|p — o) [1]. Though not particularly appro-
priate for comparing p to p, they are widely used, so Fig. 2
illustrates their behavior for MLE and HMLE, applied
to a single qubit measured in the Pauli bases. They all
show the same basic behavior. For nearly pure states, MLE
is more accurate. For highly mixed states, HMLE improves
accuracy slightly. The biggest improvement comes in the

Relative Entropy: N=10

Relative Entropy: N=100

intermediate regime where O(1/N) < 1 — 2 < O(1/+/N).
These states are not quite pure, but close enough that MLE
yields rank-deficient estimates a substantial fraction of the
time, and hedging provides substantial improvement. So,
even though HMLE is not designed to maximize fidelity or
trace distance, it improves on MLE for all but the purest
states.

Discussion.—There are other ways to avoid zero eigen-
values. Bayesian mean estimation [6] is well motivated
and accurate, but is computationally formidable (requiring
integration over d> — 1 dimensions), and philosophically
objectionable to frequentists. On the other hand, simply
mixing the MLE result with a small amount of the maxi-
mally mixed state [23] is easy to do, but ad hoc and ill
motivated. Because HMLE is based on a [slightly] modi-
fied likelihood function, it is easier to analyze and justify
than ad hoc schemes, while avoiding controversial
Bayesian reasoning.

Strict frequentist methodology suggests choosing the
most plausible state—i.e., Ppypg. Among choices with
identical properties, we may as well pick the more likely
(plausible) one. But if we choose some other estimate
(e.g., py) on its merits, then we ought to confirm that it
is almost as likely as Py g-

Consider the classical case. If n;, = 0, then Py g assigns
Pr = 0. But it is equally plausible that p;, = 1/N, in which
case k probably would not appear in the first N samples.
The likelihood function bears this out: the most likely state
sets p;, = 0, but nearby states with nonzero p; have al-
most the same likelihood. If py assigns p, = B and

N
pi=x —g)%forj # k, then
L(Py) ( B)N -
- =1 —— =~ ﬁ_ 13
L(Pmie) N ‘ 4

Likelihood ratios between ¢~ ' and e are ‘“‘barely worth
mentioning” [24], so if 8 <1, then py is essentially as

1

Relative Entropy: N=1000
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FIG. 1 (color online).
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Methodology: 10° single-qubit states p,.,. were selected at random from the Hilbert-Schmidt (‘“‘flat””) measure

on the Bloch sphere. For each state, 103 separate data sets were generated, each consisting of 3N (N = 10, 100, 1000) measurements
divided among the three Pauli operators. HMLE estimates (with several 8 values) were calculated. For each p ., relative entropy error
was averaged over all 103 data sets. Results: Error is strongly correlated with > = %(l + Trp?). There are three regimes, separated by

1 — 2 = 4/3/N (dotted line). For mixed states with 1 — r> > 4/3/N, accuracy increases slightly with the amount of hedging
(quantified by B). For slightly mixed states with 1 — 7> = 4/3/N, accuracy improves substantially with hedging, but only up to 8 = %

For nearly pure states with 1 — 72> << 4/3/N, a small amount of hedging improves accuracy, but higher 8 increases error, and the
optimal B decreases with N.
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FIG. 2 (color online). Methodology: See Fig. 1. MLE and
HMLE (with several 8 values) estimates were calculated, and
for each p, Euclidean distance and infidelity were averaged over
all data sets. (Trace and Euclidean distances are equivalent for
qubits: [|p — pll = v2llp — pll,.) Results: As in Fig. 1, there are
three regimes. Hedging provides a small but consistent improve-
ment for highly mixed states, substantial improvement for
slightly mixed states, but decreases accuracy on pure states.
Because baseline inaccuracy is lower for near-pure states, hedg-
ing achieves better overall (i.e., worst-case) accuracy than MLE.
Choosing S between 0.25 and 1 seems optimal.

plausible as Pypg. Actually, pypg comprises K — 1
independent parameters, and in this case likelihood ratios
between e X and eX are insignificant. [Typically,
L(Pyue) = ¢ X L(Pyup), so tighter significance criteria
would reject the true state.] If Py g assigns zero probability
to M < K different events, and py hedges all M of them,
then the argument leading to Eq. (13) gives a likelihood
ratio of e £, which is not significant. Quantum HMLE
satisfies a very similar condition (see Appendix A [22]),

E(ﬁH) —dB
PH = podB, 14
Lowme) € (1

so we do not pay a large price for the benefits of hedging—
Py 1s not significantly less plausible than pyy k.
Conclusions.—Hedging is a simple, easy-to-implement
solution to the zero eigenvalue problem. HMLE can be
implemented by a near-trivial change to any MLE routine,
and may even be easier than MLE. The hedged likelihood
goes smoothly to zero near the boundary, so no explicit
positivity constraint is needed, and simple gradient-
crawling methods should work. p is always full rank,
so it can be used for predictive tasks like gambling and data
compression. For qubits, HMLE provides improved

accuracy by almost all metrics. Very small values of B
are best for nearly pure states, and in general the optimal 8
is not clear. This contrast with the classical case, where
B = % is known to be asymptotically optimal, suggests that
alternative hedging functions may work better for quantum
estimation.
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