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Efficient Band Gap Prediction for Solids

M.K.Y. Chan' and G. Ceder?

YPhysics/Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

*Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 27 March 2010; published 5 November 2010)

An efficient method for the prediction of fundamental band gaps in solids using density functional
theory (DFT) is proposed. Generalizing the Delta self-consistent-field (ASCF) method to infinite solids,
the A-sol method is based on total-energy differences and derived from dielectric screening properties of
electrons. Using local and semilocal exchange-correlation functionals (local density and generalized
gradient approximations), we demonstrate a 70% reduction of mean absolute errors compared to Kohn-
Sham gaps on over 100 compounds with experimental gaps of 0.5—4 eV, at computational costs similar to

typical DFT calculations.
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Density functional theory (DFT) [1], in the Kohn-
Sham implementation [2] with local density (LDA [2]) or
generalized gradient (GGA [3]) approximations for the
exchange-correlation (XC) functional, has been success-
fully applied to deduce structural, electronic, magnetic and
other properties of a myriad of condensed matter systems.
However, the well-known “‘band gap problem”, in which
DFT in LDA/GGA fails to correctly predict the energy
gaps between occupied and unoccupied states, is a hin-
drance to research in fields including semiconductors,
optical and photovoltaic materials, and thermoelectrics.

In a typical DFT calculation, the Kohn-Sham gap Es,
i.e., difference between eigenvalues of lowest unoccupied
and highest occupied eigenstates, is identified as the band
gap. Typically, Exs underestimates band gaps (Eg,,) of
solids by 30%—100% [4]. To illustrate the problem, we plot
in Fig. 1 Exg vs Eg,, (red dots) for a test set of over 100
semiconductor compounds [5] with room-temperature
Egyp, of 0.5-4 eV, a range of particular interest for appli-
cations. Not only are the errors large, there is no discern-
ible correlation between Exg and Egyg,.

The underestimation of Eg,, by Exg in local and semi-
local functionals has been attributed to their inherent lack
of derivative discontinuity [6] and delocalization error [7].
It is often claimed that the band gap is an excited-state
property and therefore cannot be described by ground state
DFT [8]. Much effort has been devoted to solving the DFT
band gap problem both within and in addition to the Kohn-
Sham formalism, e.g., through the GW approximation [9],
time-dependent DFT [10], exact exchange [11], hybrid and
screened-hybrid [12] functionals, and modified Becke-
Johnson (MBJ) potentials [13].

In this Letter, we report an efficient method for predict-
ing band gaps for solids using computationally efficient
local and semilocal functionals. The method is drawn upon
the well-known Delta self-consistent-field (ASCF) [14]
method, and will be referred to as A-sol. The predicted
gaps with A-sol are plotted against the experimental values
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(blue crosses) in Fig. 1. The underlying physical principle
of A-sol, as in GW and screened-hybrid functionals, is a
consideration of the dielectric screening properties of
electrons. In the implementation of A-sol, as in hybrid
functionals and MBJ, one or two parameters are fixed to
minimize errors in predicting Eg,, for a test set of com-
pounds. Like MBJ and unlike GW and hybrid functionals,
A-sol is as computationally expedient as standard DFT.
Unlike MBJ, any existing DFT code and functional can be
used in conjunction with A-sol without recoding.

The fundamental gap Eyg of a system is defined as the
energy required to create an unbound electron-hole pair:

D

where N is the number of electrons in the system. The
evaluation of Egrg from (1) by explicit calculations of
energies of the system with N, N + 1 and N — 1 electrons,
i.e., the ASCF method, produces reasonable results for
atoms and molecules [7,14]. The problem that arises, in

Epg = E(N + 1) + E(N — 1) — 2E(N),
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FIG. 1 (color online). Kohn-Sham (dots) and A-sol (crosses)
vs experimental [5] gaps. Cross sizes represent uncertainties.
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applying (1) to a solid, is in determining N. If one takes
N — oo for an infinite solid, Erg reverts to Exg [6,14].

In order to apply (1) to a solid, it is instructive to
consider the addition and removal of charges to an electron
gas. Figure 2 shows the integrated screening charge N for
the screening of a static unit charge by a homogeneous
electron gas (HEG), found using the RPA static dielectric
function by Langer and Vosko [15]. Beyond a distance of
5—7kf", where k; = (372N /V)'/3 is the Fermi wave vec-
tor, N, saturates, indicating complete screening. Figure 2
also shows integrated screening charges, from ab initio
q-dependent RPA dielectric functions computed [16] for
cubic Si, GaAs, C, and ZnS, which saturate at a similar
range. The charge distribution of electrons due to mutual
screening is described by the pair distribution function g(r)
or XC hole, which is related to the dielectric function in
a way similar to N, [17]. The spherically averaged g(r)
in a HEG from quantum Monte Carlo [18] or LDA [19] has
a form similar to Fig. 2 and also saturates at 5—7kf_1.

LDA owes its success in part to the fact that it satisfies
the XC-hole sum rule [20,21]. In addition, the spherical
average and the extent of the XC hole in LDA are close to
the exact results [22]. These are integral quantities that are
not sensitive to the precise details of g(r). To obtain the
fundamental gap, we are similarly interested in an integral
quantity, namely, the total energy due to the added or
removed electron and its screening charge distribution.
Based on the attribution of band gap errors in LDA/GGA
to delocalization error [7], we propose that as long as we
avoid the delocalization error by confining the added
charge to a volume that is commensurate with the range of
the screening effects, the integrated energies thus obtained
will be reasonably correct. In other words, we propose that
the appropriate N for which to evaluate Erg from (1) in an
infinite solid is the number of electrons contained within
the extent of the XC hole, Rxc. Since Ryc = 5—7kj?', the

corresponding number of electrons inside the XC hole is
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FIG. 2 (color online). Integrated screening charge N, for a unit
charge in a homogeneous electron gas (HEG) and selected
semiconductors (inset), vs the dimensionless distance rk;.
Different HEG curves correspond to different values of the
density parameter ry, in a range (1.5-3.5) typical for solids.

estimated to be N* = ,8% ~ 20-90, where B =4-8 is a
geometric factor depending on the shape of the units used
to tile all space. We term the evaluation of band gaps from
(1) by adding and removing one electron per screening
volume, i.e., one per N* electrons, the A-sol method. We
propose that A-sol is valid, although possibly with a differ-
ent value of N*, for any XC functional which gives rea-
sonably accurate total energies.

We test the proposal that (1) can be used with N = N* €
[20, 90] to obtain the experimental band gap on the afore-
mentioned test set. We perform DFT total-energy calcula-
tions at various electron numbers with different local and
semilocal XC functionals (LDA, PBE [23] and AMO5 [24])
using the plane-wave DFT code VASP and PAW potentials
[25]. Because of the dependence of band gaps on lattice
parameters, we use room-temperature experimental lattice
constants. We use dense ( ~ 10* A3 /V,V = cell volume)
I'-centered k-point grids, and tetrahedron smearing method
with Blochl corrections [26]. To obtain accurate energies
by reducing the self-interaction error [27], the DFT + U
[28] scheme with U = 3 eV is used for oxides and halides
containing partially filled d shells.

For each compound, we determine the number of
valence electrons in the unit cell, N,. For main group
elements, the number of electrons that each ion contributes
to N, is determined according to the usual octet rule.
For transition metals, all outermost s and d electrons are
counted. The number of valence electrons assigned this
way is independent of the pseudopotentials used.

To add or remove one per N valence electrons, the
number of electrons to add/remove from a unit cell with
N, valence electrons is n = Ny/N. In most cases n is not
an integer. We calculate the energies E(N,), E(Ny + n),
and E(N, — n), from which we obtain

Epg = [E(Ny + n) + E(Ny — n) — 2E(Np)]/n.  (2)

For N = N*, this procedure is equivalent to adding and
removing one electron per screening volume.

As N is increased, the calculated Epg decreases mono-
tonically, as illustrated in Fig. 3. The best value of N, i.e.,
N*, is determined for each functional such that the mean
absolute error between Egg and Eg,, across the test set is
minimized. The uncertainty in N* is determined by
(i) leave 20% out cross validation, (ii) equalization of the
mean uncertainties in Epg and Eg,,, and (iii) allowing
the mean absolute error € to vary by o/+/M, where o is
the standard deviation in the absolute error and M is the
number of compounds. The three methods give similar
uncertainties in N*. The values of N* and uncertainties
by method (iii) are shown in Table I. The key results are
that, for all three functionals tested, N* € [20,90] as
proposed, and the A-sol method reduces Kohn-Sham
gaps errors by an average of 70%.

We note from Table I that N}, only varies slightly with
the XC functional and subgroup of compounds. The con-
stancy of N* across different functionals and the fact that
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FIG. 3 (color online). The calculated Erg (PBE) as a function
of N for several compounds.

it lies in the expected range supports our interpretation of
the A-sol method as based on addition or removal of an
electron to a unit defined by the size of the XC hole. This
method thus circumvents the delocalization problem in
local and semilocal functionals and the murky interpreta-
tion of individual Kohn-Sham eigenstates as corresponding
to single-particle excitations, and relies instead on the
well-proven accuracy of total energies in DFT.

Compounds with only s and p valence electrons are
most similar to the HEG and are therefore most amenable
to the A-sol scheme. Fig. 4 shows the predicted Epg for
74 such compounds for PBE. Significant improvements
(mean absolute error € = 0.22 eV and standard deviation
o = 0.17 eV) are obtained compared to Kohn-Sham gaps
(e =0.73 eV, 0 = 0.41 eV). For half of the compounds
the prediction error is less than 0.2 eV, and for 90% it is less
than 0.5 eV. The difference between Erg and Exg is not
simply correlated with Exg.

We note that these calculations are performed on
charged periodic cells with the requisite neutralizing back-
grounds and therefore subject to image-charge interaction
errors. We calculate the leading monopole term in the

image-charge correction [29], AE, = %, where « is the

TABLE I. The N* parameter and accuracy of A-sol for band
gap prediction in solids, for LDA, PBE, and AMO0S5. The numbers
of compounds M for different XC functionals are different
because of differences in the availability and reliability of
PAW potentials. N, is obtained from minimizing the mean
absolute error €, and o is the standard deviation of the absolute
errors. For comparison, mean absolute errors and standard
deviations are also shown for Kohn-Sham gaps.

Test XC M N* A-sol Kohn-Sham
set min best max € o € o
spd  LDA 109 50 63 80 025 0.18 093 0.58
spd  PBE 126 59 72 88 023 0.16 0.84 0.50
spd AMOS 118 60 76 91 023 0.17 0.82 0.50
sp LDA 57 43 56 78 022 0.18 0.74 0.39
sp PBE 74 52 68 87 022 0.17 073 041
sp AMOS 72 52 70 92 022 0.17 0.70 0.38
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FIG. 4 (color online). Egg (A-sol) and Exg using PBE vs Egy,
for 74 compounds with only s and p valence electrons. Select
compounds are highlighted with bolder symbols.

Madelung constant, & the bulk (electronic) dielectric
constant, and L the size of the cell. We use density func-
tional perturbation theory [30] to calculate €. We find that
|AE)| = 0.17 eV for N* = 72 in PBE for the spd test set,
and including AE|, gives € = 0.40 eV. As the Madelung
term has been shown to overestimate the image-charge
error in bulk solids [31], this gives an upper limit estimate
of the effects of image-charge errors on our results.
We note that care must be taken for materials with small
e or large unit cells, which are associated with larger
image-charge errors under the A-sol approach.

Despite its simplicity in concept and implementation,
A-sol performs similarly or better in terms of accuracy
to many other state-of-the-art band gap prediction methods.
Table II shows band gaps for a set of 12 compounds for
which predicted band gaps from the recently-proposed MBJ
[13] potential are available. The average errors for both
methods in this test set are 0.3 eV. It should be noted that
the MBJ potential is fitted to reproduce gaps in a larger

TABLE II. Comparison of Kohn-Sham (KS), MBJ-Kohn-
Sham [13], and A-sol gaps for LDA. All figures are in eV.
Compound Egyp KSipa MBJ-KS; pa A-sol; pa
C 5.5 4.1 49 5.3

Si 1.1 0.5 1.2 1.0
Ge 0.7 0.0 0.9 0.9
SiC 22 1.4 2.3 2.4
BN (cubic) 6.2 44 5.9 5.8
GaN 34 1.6 2.8 3.9
GaAs 14 0.3 1.6 1.5
AlP 2.5 1.5 2.3 2.1
ZnS 3.7 1.8 3.7 3.6
Cds 2.5 0.9 2.7 3.0
AIN 6.1 42 5.6 5.3
ZnO 33 0.8 2.7 35
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FIG. 5 (color online). A comparison of Erg computed with
A-sol (PBE) and Exs (HSE06) vs Eg,, for 95 compounds.

range (up to 13 eV), whereas N* is specifically geared
towards a narrower range of gaps (0.5 to 4 eV).

We have performed screened-hybrid (HSE06) calcula-
tions for 95 compounds in the test set and the results are
shown in FIG. 5. HSEO6 predicts band gaps for typical
semiconductors to better accuracy than A-sol (e =
0.26 eV for HSE06 vs 0.31 eV for A-sol for the set in
Table II), but has larger errors for transition-metal com-
pounds (e = 0.41 eV for HSE06 vs 0.26 for A-sol for
the set in FIG. 5). Once again, the parameters in HSEQ6
are fitted [12] to reproduce gaps in a wider range than
A-sol.

In summary, we have demonstrated A-sol as a viable
method for predicting band gaps in solids from total-
energy differences. To calculate the A-sol gap, one should
(1) use experimental lattice constants; (ii) determine the
number of valence electrons N, in the unit cell; (iii) based
on the XC functional used, find N;,, N;,;, and Ny, from
Table I; (iv) calculate the energies E(Ny), E(Ny + n), and
E(Ny — n), where n = Ny/Np.; (V) obtain the gap from
Epg = [E(Ny + n) + E(Ny — n) — 2E(N,y)]/n; and (vi) if
uncertainties in Erg are needed, repeat steps 4 and 5 with
N, and Ni... This amounts to a few total-energy calcu-
lations and can be used with any DFT implementation.
Despite the simplicity and efficiency, the accuracy of A-sol
rivals that of methods that require recoding or are more
expensive. The highest accuracies are obtained for com-
pounds with only s and p valence electrons.
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