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The structural properties of graphite, such as the interlayer equilibrium distance, the elastic constant,

and the net layer binding energy, are obtained using the adiabatic-connection fluctuation-dissipation

theorem in the random phase approximation. Excellent agreement is found with the available experi-

mental data; however, our computed binding energy of 48 meV per atom is somewhat smaller than the one

obtained by quantum Monte Carlo methods. The asymptotic behavior of the interlayer dispersion

interaction, previously derived from analytic approximations, is explicitly demonstrated to follow a

d�3 behavior at very large distances.
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Following the earlier interest in materials such as fuller-
enes and nanotubes, the interest in carbon-based materials
has recently increased enormously since the routine pro-
duction of graphene, a perfectly two-dimensional crystal
made of carbon atoms, has become possible. Before that,
graphite, the parent compound of this class of materials,
has long been a focus of studies of both theoreticians and
experimentalists. One intriguing issue is that, despite these
efforts, the weak interplanar binding between graphene
sheets (and more generally in all graphitic materials) is
still poorly understood, mainly because it involves
van der Waals interactions, which are notoriously difficult
to describe within standard density functional theory.
However, the precise description of this binding is of
crucial importance, as it ultimately controls the structure
and dynamics of all the systems related to graphite.

From the experimental point of view, the few available
values were obtained indirectly, usually extracting the bind-
ing energy assuming simplified theoretical models. From a
heat-of-wetting experiment, Girifalco and Lad [1] reported
a value of 43 meV=atom, while Benedict et al [2], perform-
ingmeasurements on collapsed nanotubes, obtained a value
of 35� 10 meV=atom. More recently, Zacaria et al. [3]
reported a larger value, 52� 5 meV=atom, by desorption
of aromatic molecules from a graphite surface.

From the theoretical point of view, various methods
were employed, ranging from semiempirical approaches
[4,5] to advanced first-principles calculations [6,7]. Since
the standard approximations used in density functional
theory (DFT) [8] such as the local density approximation
(LDA) [9] or the generalized gradient approximation
(GGA) [10] miss the long distance part of the van der
Waals interaction, there were some attempts to add pair-
wise atom-atom corrections on top of the LDA/GGA

calculations. Although these approaches are certainly
able to cure part of the problem, their predictive power is
limited. An alternative way that has been pursued recently
is the van der Waals density functional (vdW-DF) [11–13],
in which the correction taking into account the long-range
part of the interaction is an explicit nonlocal functional of
the density. Another approach [14], using second order
perturbation theory combined with DFT, gives a binding
energy value of 60–72 meV. But low order perturbation
theory might overestimate correlation effects from low
energy excitations, since MP2 diverges for metals. Very
recently, Spanu, Sorella and Galli [7] have applied elec-
tronic quantum Monte Carlo (QMC) methods to determine
the layer energetics of graphite and obtained a value of
56 meV=atom.
Also, there is evidence from analytic theory [15–17] that

the asymptotic form for the vdW interaction energy UðdÞ
between graphene layers is UðdÞ ¼ c3d

�3 at large inter-
layer separations d, as opposed to a simple UðdÞ ¼ c4d

�4

deriving from pairwise additive vdW interactions. This
feature seems to be missed by all studies mentioned above,
and raises the questions whether the magnitude of the c3
coefficient is sufficiently small to neglect its contribution,
or whether the previous calculations are simply not suffi-
ciently converged with respect to the sampling of the
Brillouin zone, resulting in the wrong asymptotic behavior.
Here, the adiabatic-connection fluctuation-dissipation

theorem (ACFDT) [18–20] is used in the direct random
phase approximation (RPA). There is substantial prior
evidence [21–26] that this approach provides accurate
results for isoelectronic energy differences—e.g. for the
distance dependence of the energy of a combined system
with fixed components separated by a variable distance d.
In the RPA, the correlation energy is written as
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2�

Z 1

0
d!Trfln½1��KSði!Þv�þ�KSði!Þvg; (1)

with �KS being the independent particle (noninteracting)
Kohn-Sham response function, and v being the Coulomb
kernel. The exchange energy is calculated exactly using the
Hartree-Fock expression. All energies are evaluated using
KS orbital of an initial calculation using the GGA-PBE
functional [10]. The present computations were realized
using the VASP code [27,28] and the projector augmented
wave method. Details and tests concerning the implemen-
tation of the ACFDT-RPA formalism within VASP can be
found elsewhere [25,26]. To ensure the convergence of the
binding energy, we used high plane wave cutoffs of 800 eV
for the Hartree-Fock part and 600 eV for the correlation
part. The response function was expanded in-plane waves
up to an energy cutoff of 250 eV. For the correlation
energy, the k-point sampling was performed using 14�
14� 6 k points for interlayer distances up to 4.5 Å, 14�
14� 3 k points at intermediate interlayer distances, and
14� 14� 1 k points for the interlayer distances larger
than 12 Å. The curves match smoothly onto each other
(see Fig. 1). For the HF part, 26� 26� 8 k points were
used. The q variable in the independent particle response
[25] �KS

~G; ~G0 ð ~q; i!Þ was sampled on the same fine grid. The

in-plane lattice parameter of graphite was not optimized
but was set to the experimental value of 2.46 Å, while
computations were realized for various values of the lattice
parameter c along the stacking direction (c corresponds to
twice the layer distance with an ABAB stacking sequence).

Our results for the equilibrium interplane distance d0,
the C33 elastic constant, and the binding energy are pre-
sented in the Table I and compared with results obtained
using the local density approximation (LDA), the
van der Waals density functionals [6,29], quantum
Monte Carlo calculations [7], and with available experi-
mental data. Let us first comment on the accuracy of the
present results. The use of 14� 14� 3 k points for the
entire energy-distance curve yields a binding energy of
50 meV, and decreasing the grid to 10� 10� 3 k points
decreases the binding energy only slightly to 49 meV,
suggesting that 10� 10 k points are sufficient in the lateral
direction. This is also confirmed by the observation that
calculations using 10� 10� 5 k points yield a binding

energy of 48 meV identical to the reported value using
14� 14� 6 k points. Hence, technically the present value
is converged to about 1 meV.
Returning to Table I, we note that LDA, although purely

local and therefore not able to describe dispersion inter-
actions, gives a fairly good equilibrium lattice parameter,
but underestimates the elastic constant by 30%. The bind-
ing energy is also seriously underestimated in comparison
with known experimental values. More interesting is the
performance of vdW-DF for graphite [6,13] or two gra-
phene sheets [29]. The best vdW-DFs gave binding ener-
gies reasonably close to our RPAvalues. However, even for
the most refined variant of VdW-DF [6], the lattice pa-
rameter along the stacking direction is overestimated by
about 10%, and the C33 elastic constant is underestimated
by at least 30%. In contrast, the RPA provides equally good
results for all essential structural and energetic parameters.
Our calculated d0 corresponds exactly to the experimental
value, and the elastic coefficient C33 also matches the
experimental values very well [34]. From these facts, it is
clear that the description given by the RPA is better than
the one of the commonly used vdW-DF, although certainly
computationally significantly more expensive (for in-
stance, for the equilibrium structure and with 14� 14�
6 k points, the RPA calculations typically required 5 hours
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FIG. 1. Binding energy (in meV/atom) of graphite (AB stack-
ing) as a function of the interplane distance (in Å). The circles
are the calculated points, the full line being only a guide to the
eyes.

TABLE I. The equilibrium interplane distance d, the elastic coefficient C33, and the binding energy E of graphite computed with the
ACFDT-RPA formalism compared with results from LDA, VdW-DF, and QMC calculations, as well as with available experimental
data.

Method LDA (Present) VdW-DFa,b QMCl ACFDT-RPA (Present) Expts

d (Å) 3.33 3.76c 3.6a 3.59b 3.426 3.34 3.34d

C33 (GPa) 29.5 13c 27b 36 40.7e 36.5e,f 38.7g 37h

E (meV/atom) 24 24c 45.5a 50b 56� 5 48 43i—35� 10j—52� 5k

aRef. [29] bRef. [6] cRef. [13] dRef. [30] eRef. [31] fRef. [32] gRef. [33] hRef. [34] iRef. [1] jRef. [2] kRef. [3] lRef. [7]
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on 64 cores). The situation is similar to that found by
Marini et al. [24] for hexagonal boron nitride, where
vdW-DF also overestimates d0, while RPA gave a good
agreement with experiment. Moreover, Spanu et al. [7]
have applied electronic quantum Monte Carlo (QMC)
methods to determine the layer energetics of graphite.
They have obtained an equilibrium lattice parameter which
is larger (3.426 Å) than experiment and their overall layer
binding energy is larger than ours (56 meV=atom versus
our 48 meV=atom). It is not yet clear whether the differ-
ence between their binding energy and ours is related to the
small size of their simulation cell, corresponding to a rather
coarse sampling of the Brillouin zone, or presents a genu-
ine difference between RPA and DMC predictions.
From our experience, however, it is likely that the DMC
calculations may require additional effort in the size ex-
trapolation, in order to obtain accurate values for the
binding energy.

Another interesting quantity to be computed is the dif-
ference in energy between the two stacking sequences,
ABAB and AA. Using the ACFDT-RPA formalism, we
calculated it to be 10 meV=atom, in favor of the ABAB
stacking. Our calculated equilibrium interplane distance
for AA graphite is 3.42 Å. In Ref. [35], the difference
between the two stackings was explained by steric reasons:
for the AB stacking, the decrease in kinetic energy is larger
than for the AA stacking. Although this argument has been
put forth in the framework of the local density approxima-
tion, it is still perfectly valid here.

Previous analytic work [15–17] predicts that the energy
of highly stretched graphite (when the interplane distance
approaches infinity) is of the form E ¼ constþ c3d

�3.
This behavior is arising from �z � �z� transitions in the
vicinity of the k point. However, our present RPA calcu-
lations do not confirm this behavior upon first sight. A fit of
the correlation energy from 3–9 Å yields an exponent d�n

of n ¼ 4:2, very similar to the values reported before for
DMC calculations [7]. A fit to distances between 9 and
24 Å, however, suggests that the exponent might drop to
values around 3, but the results depend strongly on the
applied k-point sampling and the considered distances. In
order to elucidate this issue, we have performed additional
calculations for a selected energy window around the Fermi
level allowing only for transitions between �z and �z�
states with a maximum energy transfer of 1.25 eV. Hence,
all transitions involving other states than the �z bands
crossing at the Dirac point (K) are omitted. This reduces
the computational effort massively, and we can apply a
much denser k-point grid and consider significantly larger
layer distances. Computing the correlation energy for a
series of k-point grids, from 22� 22� 2 to 32� 32� 2
points, we find that all curves show a power law close to
d�3. For instance, for the 32� 32� 2 set, the best fit is
obtained for fðdÞ ¼ Aþ c=d2:84. The correlation energy
for the grid of 32� 32� 2 is shown in Fig. 2 visually

yielding an excellent fit for Aþ c3=d
3 and a poor descrip-

tion for Aþ c4=d
4. This suggest that at large distances, in

fact, a 1=d3 behavior is dominating; however the corre-
sponding energy is small, of the order of a few meVonly.
The predicted precoefficient c3 is approximately

0:5 eV � �A3 per unit cell, much smaller than from the

analytical derivation [15–17], which suggested c3 ¼
3:2 eV � �A3 per unit cell. However, in the analytical stud-
ies, local field effects in the intraplane electronic screening
were ignored, as was the finite bandwidth of the �z bands
and the associated departure of the electronic Bloch wave

dispersion from the linear form E ¼ vFj ~k� ~Kj. Thus a
perfect agreement of our calculations with the asymptotic
theory cannot to be expected.
In view of the large number of k points needed for

convergence of RPA calculations on graphite due to its
semimetallic behavior at the Fermi level, it will be numeri-
cally challenging to extend our approach to more complex
graphitic systems. More efficient algorithms are needed,
perhaps with an explicit incorporation of the known ana-
lytic structure of graphitic response functions at small
frequency and wave number [15]. In view of the limited
k-point convergence of earlier calculations, as well as the
spread of experimental data, we believe that our value of
48 meV=atom for the graphite layer binding energy can be
considered as the current benchmark against which new
algorithms or functionals should be tested.
In summary, we have obtained the equilibrium lattice

parameter, the elastic constant C33, and a benchmark layer
binding energy for graphite, using the adiabatic-connection
fluctuation-dissipation theorem in the random phase ap-
proximation. Excellent agreement was found in compari-
son with available experimental data for all three
quantities. Our calculated binding energy differs by 15%
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FIG. 2 (color online). Correlation energy (in meV per unit cell)
at large interplane distance (in Å) calculated from states close to
the Fermi level (see text). The calculated data (circles) are best
fitted by a function with a 1=d3 dependence (red dot-dashed)
rather than a 1=d4 dependence (green dashed).
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from the one obtained from QMC, which is a reasonably
small discrepancy, considering that the QMC calculations
were performed using a rather small supercell. An impor-
tant contribution of our work is the confirmation of the
c3=d

3 behavior of the correlation energy at large distances.
Remarkably, the asymptotic behavior is not visible at short
or medium distances, as it is completely overridden by the
1=d4 behavior dominating at these distances. Further theo-
retical investigations will be required to understand why
the c3 coefficients are smaller than expected, and why the
1=d3 behavior is not visible at all at small distances.

Supercomputer time was provided by GENCI (project
x2010085106) and the Vienna Scientific Cluster (VSC).
This project is supported by the Australian Governments
International Science Linkages program, and a France-
Australia FAST grant. S. L. and J. G.A. acknowledge fi-
nancial support from ANR Grant ANR-07-BLAN-0272
and ANR Grant ANR-06-NANO-053-02. J. H. and G.K.
acknowledge financial support by the Austrian Fonds zur
Forderung der wissenschaftlichen Forschung. J. D. ac-
knowledges A. Rubio, P. Garcia-Gonzalez, G. Galli, I.
Snook, and M. Per for useful discussions.

[1] L. A. Girifalco and R.A. Lad, J. Chem. Phys. 25, 693
(1956).

[2] L. X. Benedict, N.G. Chopra, M. L. Cohen, A. Zettl, S. G.
Louie, and V.H. Crespi, Chem. Phys. Lett. 286, 490
(1998).

[3] R. Zacharia, H. Ulbricht, and T. Hertel, Phys. Rev. B 69,
155406 (2004).

[4] L. A. Girifalco, M. Hodak, and R. S. Lee, Phys. Rev. B 62,
13 104 (2000).

[5] M. Hasegawa, K. Nishidate, and H. Iyetomi, Phys. Rev. B
76, 115424 (2007).

[6] E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaard,
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