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In this Letter we study dressed bound states in Fermi-Bose mixtures near broad interspecies resonances,

and implications on many-body correlations. We present the evidence for a first order phase transition

between a mixture of Fermi gas and condensate, and a fully paired mixture where extended fermionic

molecules occupy a single pairing channel instead of forming a molecular Fermi surface. We further

investigate the effect of Fermi surface dynamics and pair fluctuations and discuss the validity of our

results.
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Since the observation of molecules of Fermi atoms near
Feshbach resonances, fascinating pairing correlations in
cold Fermi gases have been successfully investigated
both experimentally [1–5] and theoretically [6–8]. Near
broad resonances where the atom-molecule coupling is
very strong, pair correlations can also be closely related
to the ones in the crossover theory pioneered a while ago
[9–11]. Meanwhile, interspecies Feshbach resonances in
Fermi-Bose mixtures of 6Li-23Na, 40K-87Rb, and 6Li-87Rb
have been experimentally observed [12–16]. Recently,
weakly bound 40K-87Rb pairs prepared near Feshbach
resonances were further successfully converted into cold
molecules [17], which can potentially lead to exciting
opportunities for studying new quantum states of matter
[18]. Previous theoretical studies on Fermi-Bose mixtures,
on the other hand, have mainly focused on narrow reso-
nances or when the atom-molecule coupling is very weak
[19–21]; phase boundaries in this limit depend on atom-
molecule coupling strengths.

Experimentally, creating and probing correlations in
Fermi-Bose mixtures near narrow resonances is more chal-
lenging than near broad resonances. For a Feshbach reso-
nance with a width �B and background scattering length
aBG, an effective resonance energy width can be introduced
as �res ¼ 2mRa

2
BGð���BÞ2=@2 ; here �� is the difference

in magnetic moments between the scattering and molecule
channels and mR is the reduced mass of a pair of Bose and
Fermi atoms. For interspecies resonances confirmed so far
[12–16,23], �res can be a few orders of magnitude bigger
than the Fermi energy at a typical density of 1014 cm�3

[12]. So some of the well-studied resonances are quite
broad, and many-body correlations near these interspecies
resonances are still not thoroughly understood. One of the
very fundamental questions we hope to answer in this
Letter is, what is the nature of quantum matter near broad
interspecies resonances. In particular, how do dressed two-
body bound states evolve when approaching resonances?
Accordingly, what kinds of many-body correlations are
developed in a quantum Fermi-Bose mixture? And the
physics near broad resonances can distinctly differ from

that near narrow resonances; some basic concepts intro-
duced for narrow resonances such as molecular Fermi
surfaces might not be directly applicable here. Motivated
by these considerations, we carry out a study on Fermi-
Bose mixtures near broad interspecies Feshbach reso-
nances, which serves as a potential reference for more
sophisticated analyses. Apart from the phase diagrams in
terms of interspecies scattering lengths abf and the Bose-
Fermi mass ratio mB=mF, we focus on bound state prop-
erties which can be potentially probed in experiments. Our
results are useful for the understanding of correlations in
6Li-23Na, 6Li-87Rb, and 40K-87Rbmixtures. For simplicity,
we employ a simplest one-channel Hamiltonian which
captures the most important aspects near broad resonances,
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here mR ¼ mBmF=ðmB þmFÞ, �Rk ¼ @
2k2=2mR. We as-

sume that the background boson-boson interactions are
repulsive so that the mixture is stable; to illustrate the
idea, here we only include interspecies scattering.
We first consider the binding energy of a pair of Fermi

and Bose atoms with opposite momenta (k, �k) in the
presence of a condensate (BEC) and a Fermi surface of
Fermi atoms which blocks all states below its Fermi mo-
mentum @kF. Pauli blocking effects of a Fermi sea indeed
lead to dressed bound states at arbitrarily small negative
scattering lengths but with an anomalous dispersion or a
negative effective mass [see also the discussions before
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Eq. (4)]. Furthermore, the energy WB it takes to create a
bound state from a noninteracting ground state can be
either positive or negative depending on the scattering
lengths abf , a unique feature of Fermi-Bose systems. This
is because, to form a pair of atoms with opposite momenta
(k,�k) near the Fermi surface jkj ¼ kF, a Bose atom has
to be promoted to right above the Fermi surface, which
results in an energy penalty of �BF ¼ @

2k2F=2mB. For a
bound state with an arbitrary total momentum Q or a
kinetic energy �CQ ¼ @

2Q2=2ðmF þmBÞ, the energy cost

is WBðQÞ ¼ �BF þ �CQ þ!B. The Q-dependent !Bð<0Þ
can be obtained by solving the equation

�mR�

2�abf@
2
¼

0
@ X

jðmR=mBÞQþkj>kF

1

�Rk � �RF �!B

�X
k

1

�Rk

1
A:
(3)

In the limit of small kFabfð<0Þ and when Q ¼ 0, Eq. (3)
leads to !B ¼ �4�RF expð �

kFabf
Þ, �RF ¼ @

2k2F=2mR. The dis-

persion of bound states that can be probed using photo-
associative spectroscopy is shown in Fig. 1. For small
negative scattering lengths abf , bound states are fully
gapped with positive energiesWBðQÞ, and the ground state
is a mixture of Fermi gas and BEC. However, WBð0Þ, the
energy gap of bound states, vanishes at a critical scattering

length að1Þ. In Fig. 2, we present results of að1Þ versus

mB=mF. For heavy Bose atoms, kFa
ð1Þ approaches a small

value of �= ln½mF=4mB�.
To ensure the stability of Q ¼ 0 molecules near the

transition line að1Þ, we further examine Meff , the effective

mass near Q ¼ 0. At scattering lengths að1Þ or when
WBð0Þ ¼ 0, we find

1
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¼ 1

mT

�
1� 4mF

3mB

g

�
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��
; (4)

and the dimensionless function gðx2Þ ¼ x=½ð1� x2Þ2 �
ðln1þx

1�x þ 2x
1�x2

Þ�. As long as mB=mF > 0:7 and the energy

penalty �BF is not too heavy,Meff is positive, although it can
be much bigger than the bare mass mTð¼ mF þmBÞ as a
result of dressing in the Fermi sea. Below we focus on the
limit of positive Meff that is most relevant to the experi-
mental mass ratio mB=mF (between 2.175 and 14.5) [24].
Note that the binding energy!B is independent of the Bose
atom density when the Fermi sea is treated as a static
background.
The above analysis, at first sight, seems to suggest that

when WB becomes negative, a small fraction of Fermi and
Bose atoms start forming molecules or a dilute molecular

Fermi gas signifying a phase transition at að1Þ. Such a
picture was in fact previously proposed for mixtures near
narrow resonances [19,20]. However, since the extent of
molecules dm is typically comparable to or much longer
than the Fermi wavelength 2�=kF near broad resonances,
pairs may be accommodated, even before the two-body
gap WB vanishes, in other more exotic forms without
forming a molecular Fermi surface. Below we provide
evidence for such a possibility. Note that a finite two-
body gap WB suggests a local stability of the Fermi gas-
BEC mixture against the emergence of a Fermi gas of

molecules; i.e., when 1=a < 1=að1Þ, a molecular Fermi
gas cannot be a ground state. It is in this limit that we
illustrate, based on an energetic analysis, that a third state
or a fully paired state actually further lowers the energy.
Suggested by the above discussions, we consider the

energetics of pairing states of Fermi-Bose atoms and,
from now on, focus on homogeneous mixtures with equal
populations of fermions and bosons, i.e. NF ¼ NB.
Although, in principle, pairing with a finite total momen-
tum @Q can occur in ground states, detailed calculations
show that, for a range of mass ratios (mB=mF > 0:2)
relevant to Fermi-Bose mixtures studied in experiments
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FIG. 1 (color online). The energy dispersion of bound states
for the mass ratio mB=mF ¼ 2:175 or 40K-87Rb mixtures. From
top to bottom the lines represent WBðQÞ in units of �RF for
1=kFabf ¼ �0:2, �0:1145, �0:05, and 0.0145. The shaded
region represents the pair excitation continuum.
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FIG. 2 (color online). Scattering length að1Þ at which the
energy cost WB to create a molecule with @Q ¼ 0 from a
Fermi gas-BEC mixture becomes zero, as a function of the
Bose-Fermi mass ratio mB=mF. The inset shows WB, the energy
gap of molecules in units of �RF as a function of kFabf (and
1=abf < 1=að1Þ) for different mass ratios or mixtures.
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so far, pairing in the @Q ¼ 0 channel is always dominant
and favored, qualitatively consistent with our analyses
on the two-body bound states. Below we only show results
of Q ¼ 0 pairing and adopt the simplest pairing wave
function

jg:s:i ¼ expðc0by0 Þ
Y
k

ðuk þ vkf
y
kb

y
�k þ �kf

y
kÞjvaci; (5)

where uk, vk, and �k are three families of variational
parameters. We obtain the energy of the variational states
and then minimize it with respect to uk, vk, and �k, which
are subject to the normalization condition jukj2 þ jvkj2 þ
j�kj2 ¼ 1. Equilibrium conditions can then be obtained,
and there are two solutions for any given k: (i) an unpaired
state with �k ¼ 1 and uk ¼ vk ¼ 0 and (ii) a paired state

with �k ¼ 0 and v2
k ¼ 1

2 ð1� �R
k
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Þ, and
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,

�R
k ¼ �Rk ��, and � is the pair chemical potential. The

pairing gap �, � and the condensed population jc0j2 are
determined self-consistently, NF¼

P
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To minimize the energy, we further choose �k to be a step
function, �k ¼ 1 if jkj � XkF, and zero otherwise; the
dimensionless variational parameter X 2 ½0; 1� specifies
the size of the residue Fermi surface of unpaired Fermi
atoms. WhenNF ¼ NB, one can also verify that X

3 is equal
to jc0j2=NB, i.e., the condensation fraction.

In Figs. 3 and 4, we present the main results of varia-
tional calculations. In Fig. 3, the energy per pair of atoms is
shown as a function of X, the size of the Fermi surface of
unpaired fermions. At small and negative scattering
lengths, a Fermi gas-BEC mixture is a ground state, and
X0 ¼ 1, � ¼ �FF þWB (�FF ¼ @

2k2F=2mF), and � ¼ 0.
A fully paired state with X0 ¼ 0 becomes degenerate
with the Fermi gas-BEC mixture (X0 ¼ 1) at a critical
scattering length acr, beyond which the paired state be-
comes a ground state. However, a Fermi gas-BEC mixture
remains locally stable until scattering lengths reach the

value of að1Þ which is fully consistent with the above study
of bound states. Our variational calculations suggest a first
order phase transition between a Fermi gas-BEC mixture
and a fully paired mixture. This later state of extended
molecules is conceptually different from a Fermi gas of
molecules; instead, all molecules, though fermionic in
nature, occupy the same pairing channel with zero total
momentum. A direct comparison of energies indicates that
a fully paired mixture has lower energies than a Fermi gas

of molecules, provided 1=abf < 1=að2Þ. For 40K-87Rb mix-

tures, 1=kFa
ð2Þ is about 0.25–0.3 and 1=að2Þ > 1=að1Þ; fur-

ther towards the molecular side, a paired mixture is
expected to evolve into a Fermi gas of molecules.

In Fig. 4, we further present the results on the pair-
breaking energy � and the pair chemical potential �.
The pair-breaking energy can be probed when applying
rf pulses to transfer Fermi atoms to a different hyperfine
spin state [5,25] that weakly interacts with the Fermi-Bose
mixture. The frequency shift in the rf spectroscopy should

be @�!ðkÞ ¼ 1
2 ð�R

k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�R

kj2 þ 4�2
q

Þ. In the fully paired

phase, Bose atoms are completely depleted and the Bose
atom distribution nBðkÞ closely follows the Fermi atom
distribution nFðkÞ.
At small negative scattering lengths when quantum

fluctuations are weak, our mean-field analyses on two-
body bound states as well as the fully paired states are
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FIG. 3 (color online). (a) acr at which a first order phase
transition occurs, as a function of the mass ratio mB=mF. The
dashed line is að1Þ along which a Fermi gas-BEC mixture
becomes locally unstable. Near acr, there is a tiny window for
phase separation (shaded area in the inset). The dotted (dashed-
dotted) line is the shifted acr (a

ð1Þ) due to quantum fluctuations
[see the discussions around Eq. (7)]. (b) Ep, energy per pair of

Fermi-Bose atoms in units of �RF as a function of X, the size of
the Fermi surface of unpaired Fermi atoms, for the mB=mF ¼
2:175 or 40K-87Rb mixture. From top to bottom, the lines
represent Ep for 1=kFabf ¼ �5, �0:1145 (for acr), �0:05,

0.0145 (for að1Þ), and 0.2. X ¼ 1 corresponds to an unpaired
state, and X ¼ 0 is for a fully paired mixture.
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FIG. 4 (color online). (a) Pair-breaking energy � and (b) pair
chemical potential � in units of �RF as a function of the scattering
length kFabf (near acr) for the mass ratio mB=mF ¼ 2:175 or
40K-87Rb. The dashed lines are for the values of metastable
states. The tiny window for phase separation near acr is too
small to show here [see the inset of Fig. 3(a)].
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asymptotically exact. And að1Þ, acr estimated in the limit of

the large mass ratio (kFa
ð1Þ � �= ln½mF=4mB� in Fig. 3)

are quantitatively valid. However, when kFa is of order 1,
the fluctuations become substantial and the bound states
can be further dressed in fluctuating particle-hole pairs; the
energetic analyses are subject to corrections. To clarify
this, we estimate the dominating effects of Fermi surface
dynamics, i.e., the Gorkov-Melik-Barkhudarov (GMB)
corrections in the two-body scattering vertex due to fluc-
tuating particle-hole pairs [22,26,27], and the self-energy
(SE) effect which mainly represents atomic Fermi surface
smearing and the mass renormalization due to scattering by
the condensate or Fermi sea. We then examine the pole
structure of the propagator for a pair of Fermi-Bose atoms,
taking into account these corrections, and we obtain the
binding energy !B. The relative shift caused by the GMB
effect (the leading order term R1) and the SE effect (the
higher order term R2) is given as

� lnj!Bj
lnj!Bj

¼ R1ðkFabfÞ þ R2ðkFabfÞ2 lnjkFabfj . . . ; (7)

where R1;2 are both dimensionless quantities depending on

the mass ratio mB=mF and can be obtained diagrammati-
cally [28]. For large mass ratios (mB=mF), one finds that
R1 �� lnðmB=mFÞ=� and R2 ��2=ð3�2Þ, and !B is
reduced by a factor of mF=mB solely due to the GMB
effect. The net reduction in the binding energy !B leads

to an upward shift of 1=að1Þ (dashed-dotted line) in Fig. 3.
In addition, we have estimated that, for the paired state, the

amplitude of pair fluctuations A1 � ð�=�RFÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=mRkF

p
(� is the compressibility of the paired mixture), and the
corresponding zero point energy (in units of �RF) per parti-

cle A2 � ð�=�RFÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mRkF=�

p
. We incorporate these quan-

tum fluctuations (analogous to NSR effects [11]) and the
GMB correction into our analysis of the energetics of the
paired state. For 40K-87Rb mixtures, we find that A1 �
0:01, A2 � 0:003 and R1 � �0:4, R2 � �0:1; the GMB
and SE effects appear to be more dominant. The modified
critical lines obtained by extrapolating the above analyses
to near resonance are shown in Fig. 3 and are qualitatively
consistent with the mean-field ones. The data suggest that
quantum fluctuations tend to enlarge the window between

1=acr and 1=að1Þ and further stabilize the first order phase
transition. Quantum Monte Carlo simulations similar to
those in Ref. [29] still need to be carried out.

In conclusion, we have examined dressed bound states
and provided evidence of a new quantum state of extended
molecules near broad interspecies resonances. As long as
three- and higher-body correlations are insignificant, our
results can be applied to understand Fermi-Bose mixtures
near broad resonances.
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Note added.—Upon submission of this work, we learned
that finite-temperature mixtures near broad resonances
were studied in Ref. [30]. After acceptance of this Letter,
we further learned the dimer dispersion was also discussed
in Ref. [31].
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