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A particle-number projection technique is used to calculate transfer probabilities in the 16Oþ 208Pb

reaction below the fusion barrier. The time evolution of the many-body wave function is obtained with

the time-dependent Hartree-Fock (TDHF) mean-field theory. The agreement with experimental data for

the sum of the proton-transfer channels is good, considering that TDHF has no parameter adjusted on the

reaction mechanism. Some perspectives for extensions beyond TDHF to include cluster transfers are

discussed.
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Binary collisions of many-body systems are of funda-
mental interest to test dynamical approaches of the quan-
tum many-body problem. During the collision, the systems
may retain their entities [(in)elastic scattering] or new ones
may be produced if they fuse or transfer some constituents.
Examples of transfer reactions include electron transfer in
ion or cluster collisions [1], and nucleon transfer in colli-
sions of atomic nuclei [2]. The prediction of the outcome of
such reactions is one of the main challenges of modern
quantum many-body dynamics theories. In particular, the
transfer products may be in a coherent superposition of
fragments with different constituent numbers, and transfer
probabilities should be computed to allow comparison with
experiments.

The coupled channel framework, where the relative
motion of the collision partners is coupled to their internal
degrees of freedom, is amongst the most popular ap-
proaches to study transfer reactions [3,4]. It allows a de-
tailed reproduction of experimental data, providing the fact
that the structure of the collision partners (ground and
excited states) as well as their interaction potential are
well known. For numerical tractability, however, only
few states are usually included. In addition, all information
on the structure of the reactants is not always available, as,
e.g., for exotic nuclei. It is then important to develop other
approaches with less parameters, to enhance their predic-
tive power. Recent works have pushed the envelope of
describing binary collisions of many-body systems both
quantum mechanically and microscopically, with no pa-
rameter adjusted on reaction mechanisms. For instance, the
dynamics of the valence electrons in collisions of atoms,
molecules, or atomic clusters, is usually given by the time-
dependent density functional theory (TDDFT) (see, e.g.,
[5] and references therein). In nuclear physics, these ap-
proaches usually consider independent particles evolving
in a mean-field as a starting point, as in the time-dependent
Hartree-Fock (TDHF) theory [6,7]. Although they have

been mostly applied to fusion reactions, several recent
attempts of describing nucleon transfer in heavy-ion colli-
sions within TDHF have been made [8–13].
Here, we use a particle-number projection technique on

the fragments of the many-body state to determine the
transfer probabilities. This technique is standard in
beyond-mean-field models for nuclear structure when the
number of particles is only given in average [14]. In the
present work, it is applied in the context of heavy-ion
collisions; however, it could be generalized to determine
the particle-number distribution in fragments of any many-
body system, for instance, following electron transfer or
ionization in atomic clusters, and nuclear fission.
We investigate sequential transfer of nucleons in 16Oþ

208Pb collisions using the TDHF theory. Nucleon transfer
may occur when the projectile has enough energy to over-
come the Coulomb repulsion and reach the vicinity of its
collision partner, that is, at energies around and down to
few MeV below the so-called fusion barrier. Here, we
focus on sub-barrier central collisions and compare our
calculations with the sum of experimental one and two-
proton transfer probabilities. Note that the relative yield
between one and two-proton transfer is sensitive to nucleon
clusters which are not included in TDHF. Perspectives of
this work in terms of beyond-TDHF improvements to treat
properly correlations responsible for transfer of nucleon
clusters are then discussed.
The TDHF theory has been introduced by Dirac [15]. In

nuclear physics, it is usually used with a Skyrme energy
density functional (EDF) [16] to generate the nuclear mean
field [9,17,18]. The EDF is the only phenomenological
ingredient which is adjusted on few nuclear structure
properties [19]. The same EDF is used to compute
the initial Hartree-Fock ground state of the nuclei and
the time evolution. The N particles are constrained to
be in an antisymmetrized independent particle state
(Slater determinant) at any time. The state vector reads
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j�i ¼ QN
i¼1 â

y
i j�i, where âyi creates a particle in the state

jiiwhen applied on the particle vacuum j�i. The one-body
density matrix of such a state reads �ðrsq; r0s0q0Þ ¼
P

ini’
sq
i ðrÞ’s0q0�

i ðr0Þ, where ’sq
i ðrÞ ¼ hrsqjii is a single-

particle wave function, r, s and q denote the nucleon
position, spin, and isospin, respectively, and ni ¼ 1 for
occupied states (1 � i � N) and 0 otherwise. The TDHF
equation reads i@ @

@t � ¼ ½h½��; ��. The single-particle

Hamiltonian h½�� is related to the Skyrme EDF, noted

E½��, which depends on local densities [20] by h½���
ðrsq; r0s0q0Þ ¼ �E½��

��ðr0s0q0;rsqÞ .
Realistic TDHF calculations in 3 dimensions are now

possible with modern Skyrme functionals including spin-
orbit term [6,7,21,22]. Here, the TDHF equation is solved
iteratively in time using the TDHF3D code with the SLy4d
parameterization of the Skyrme EDF [6]. This code is a
time-dependent extension of a version of the EV8 code
without pairing [23]. The algorithm for the time-evolution
is described in [9,17]. A time step �t ¼ 1:5� 10�24 s
is used. The spatial grid has Nx � Ny � Nz=2 ¼
84� 28� 14 points with a plane of symmetry (the colli-
sion plane z ¼ 0) and a lattice spacing �x ¼ 0:8 fm. The
initial distance between the nuclei is 44.8 fm.

The density evolution of the 16Oþ 208Pb central colli-
sion at a center of mass energy Ec:m: ¼ 74:44 MeV (just
below the fusion barrier) plotted in Fig. 1 shows that the
two nuclei form a di-nuclear system with a neck and then
reseparate. There is a priori no reason that these two frag-
ments conserve the same average neutron and proton num-
bers as in the entrance channel [11] (except for symmetric
reactions). Indeed, between the touching and reseparation,
nucleons can be exchanged. In TDHF calculations, this
exchange is treated through the time-dependent distortion
of single-particle wave functions which can eventually be
partially transferred from one partner to the other.

The following operator written in r space counts the
number of particles with isospin q in the right side of the
separation plane (defined arbitrarily as x > 0):

N̂
q
R ¼ X

s

Z
drâyðrsqÞâðrsqÞ�ðxÞ; (1)

where �ðxÞ ¼ 1 if x > 0 and 0 elsewhere, and âðrsqÞ ¼P
i’

sq
i ðrÞâi. Let us write hijjiqR ¼ P

s

R
dr’sq�

i ðrÞ�
’sq

j ðrÞ�ðxÞ the overlap in the x > 0 region between two

single-particle states with isospin q. Using hâyi âji ¼ ni�ij,

we obtain the average number of particles in the x > 0

region as hN̂q
Ri ¼

P
ihijiiqRni. Applied to the average proton

and neutron numbers of the small fragment after a central
collision at Ec:m: ¼ 74:44 MeV (see Fig. 1), we get �6:1
protons and �8:1 neutrons, respectively. This indicates
that the proton-transfer probability from the light to the
heavy fragment is so high at the barrier that two protons, in
average, have been sequentially transferred. Decreasing
the energy induces a rapid convergence of the average

proton and neutron numbers towards the 16O ones.

Indeed, hN̂p
Ri ’ hN̂n

Ri ’ 8:0 at Ec:m: ¼ 70 MeV.
Well below the barrier, where transfer is prohibited, the

variance of N̂R is strictly zero: �2
R ¼ hN̂2

Ri � hN̂Ri2 ¼ 0
(here and in the following, we omit the isospin q for
simplicity). This property is lost at higher energies where
transfer occurs. Then, the system in the exit channel is not

an eigenstate of N̂R, and each fragment is no longer de-
scribed by an eigenstate of the particle-number operator
(e.g., a Slater determinant). Note that the upper limit of the

variance obeys �2
R � hN̂Rið1� hN̂Ri

Nt
Þ for a Slater determi-

nant [24], where Nt is the total number of protons or
neutrons. This is an intrinsic limitation of independent
particle systems. In case of violent collisions such as
deep-inelastic reactions, experimental variances may ex-
ceed this limit [24], and inclusion of correlations is then
needed. However, for less violent collisions such as sub-
barrier transfer reactions, smaller experimental variances
are expected, and a mean-field approach like TDHF might
give reasonable estimates of the variances.
Let us calculate the variance�2

R after the reaction. Using

anticommutation relations for fermions and hâyi âyj âkâli ¼
ninjð�il�jk � �ik�jlÞ for a Slater determinant, we get [24]

�2
R ¼ hN̂Ri �

P
N
i;j¼1 jhijjiRj2. Applying this formula to the

small fragment in the exit channel of the reaction at
Ec:m: ¼ 74:44 MeV shown in Fig. 1, we get �p

R ’ 0:5 for
protons and �n

R ’ 0:3 for neutrons. At Ec:m: ¼ 70 MeV,
we get �p

R ’ �n
R ’ 0:2, showing that transfer occurs at this

energy, although it does not change the average number of
protons and neutrons as discussed before. These finite
values of �R clearly indicate that the many-body systems
on each side of the separation plane are no longer eigen-
states of the particle-number operator.
To get a deeper insight into these TDHF predictions, we

now compute the transfer probabilities. It is possible to
extract the component of the wave function associated to a
specific transfer channel using a particle-number projector

T
im

e

density
(fm   )−3

FIG. 1 (color online). Density evolution for the central colli-
sion of a 16O (initially on the right side) with a 208Pb (left) at
Ec:m: ¼ 74:44 MeV. The snapshots run from t ¼ 7:5 to 37.5 zs
by steps of 7.5 zs.
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onto N protons or neutrons in the x > 0 region. Such a

projector is written P̂RðNÞ ¼ 1
2�

R
2�
0 d�ei�ðN̂R�NÞ [25]. It

can be used to compute the probability to find N nucleons
in x > 0 in the state j�i,

jP̂RðNÞj�ij2 ¼ 1

2�

Z 2�

0
d�e�i�Nh�j�Rð�Þi; (2)

where j�Rð�Þi ¼ ei�N̂R j�i. Note that j�Rð�Þi is an inde-
pendent particle state. The last term in Eq. (2) is then the
determinant of the matrix of the occupied single-particle
state overlaps h�j�Rð�Þi ¼ detðFÞ with

Fij ¼
X

s

Z
dr’s�

i ðrÞ’s
jðrÞei��ðxÞ ¼ �ij þ hijjiRðei� � 1Þ:

The integral in Eq. (2) is discretized using �n ¼ 2�n=M
with the integer n ¼ 1 � � �M. Choosing M ¼ 300 ensures
convergence. The resulting probabilities are shown in
Fig. 2 for central collisions at Ec:m: ¼ 74:44 and 65 MeV
(� 13% below the barrier). At the barrier, the most
probable channel is a two-proton transfer leading to a
14C nucleus in the exit channel. At the lower energy, the
transfer probabilities are typically one or several orders of
magnitude lower than at the barrier and the (in)elastic
channels are by far the dominant ones. Note that the
probability for proton stripping (transfer from the light to
the heavy nucleus) is higher than for proton pickup (trans-
fer from the heavy to the light nucleus) as observed ex-
perimentally [26], while neutron pickup is more probable
than neutron stripping.

In transfer experiments, one usually measures angular
differential cross sections for multinucleon transfer chan-
nels. It is numerically heavy and time consuming to com-
pute such cross sections. A standard alternative is to
translate the experimental angular cross-sections at sub-
barrier energies into transfer probabilities as a function of
the distance of closest approach Rmin between the collision

partners assuming a Rutherford trajectory [27]: Rmin ¼
Z1Z2e

2½1þ cosecð�=2Þ�=2Ec:m: where � is the center of
mass scattering angle, and Z1;2 the proton numbers of the

colliding nuclei. Experimental transfer probabilities can
then be calculated from the ratio of sub-barrier transfer
to Rutherford cross sections [27] for a given distance of
closest approach.
The evolutions of the main proton-transfer channels with

the distance of closest approach predicted by TDHF for
head-on collisions are shown in Fig. 3 in solid, dashed and
dotted lines for zero, one and two-proton stripping, respec-
tively. In fact, the TDHF probability for two-proton trans-
fer behaves roughly as the square of the one-proton transfer
probability (if the latter is small compared to one), which is
a signature for sequential transfer [2]. The two-proton
transfer in TDHF is, then, much smaller than the one-
proton one (except at the barrier, corresponding to Rmin ’
12:7 fm).
Multiproton transfer has been measured for 16Oþ 208Pb

at Ec:m: ¼ 74:3 MeV by Videbæk et al. [26]. One and two-
proton stripping has been observed at this energy, and no
proton-pickup, in qualitative agreement with TDHF calcu-
lations. However, it is well known that the two-proton
stripping in this reaction occurs mainly as a cluster transfer,
i.e., as a pair or alpha-transfer [26,28]. The treatment of
such nucleon-clusters involves correlations beyond TDHF.
As a consequence, TDHF is not expected to reproduce
the ratio between the one and two-proton transfer proba-
bilities, but only their sums which should be less affected
by such cluster structures. Indeed, in a simple model
with transfer probability per nucleon p � 1 and xN
(resp. ð1� xÞN) paired (unpaired) nucleons, one expects
the two-nucleon transfer probability to be P2n � xNp (as
the two correlated nucleons are transferred as a cluster) and
the one-nucleon transfer to be P1n � ð1� xÞNp. The sum
P1n þ P2n � Np is then independent on the correlations.
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FIG. 2 (color online). Neutron (circles) and proton (squares)
number probability distributions of the lightest fragment in exit
channel of a head-on 16Oþ 208Pb collision at Ec:m: ¼
74:44 MeV (solid lines) and 65 MeV (dotted lines).
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FIG. 3 (color online). Proton number probability distribution
as function of the distance of closest approach obtained with
TDHF (lines). Experimental data (squares) are adapted from
Ref. [26] using Ec:m: ¼ 74:3 MeV data and show the sum of
the one and two-proton transfer channels.
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The experimental sum of the one and two-proton-transfer
probabilities are shown in Fig. 3 (squares). They can be
compared with the one-proton transfer in TDHF, as the
two-proton sequential transfer is negligible in this energy
range. The overall agreement is good, considering the
fact that TDHF has no parameter adjusted on reaction
mechanism. Note that the overestimation of the data at
Rmin < 13 fm might be due to the fact that sub-barrier
fusion is not included in TDHF while it would remove
some flux from quasielastic channels at distances close to
the barrier radius.

Pair transfer should be enhanced by pairing correlations
and could be investigated with the TDHF-Bogolyubov
theory [29,30], or the time-dependent density-matrix
theory [31]. Variances of fragment mass and charge dis-
tributions would be improved with stochastic techniques to
account for zero point motion [13] or the Balian-Vénéroni
variational approach [32]. One limitation of TDHF is that
all exit channels follow the same trajectory. Several TDHF
trajectories with different external potentials ’’forcing’’
transfer could be used to build a more general state using
the time-dependent generator coordinate method [33].
In addition, dynamical eikonal approximation could be
used to account of quantal interferences between different
trajectories [34]. Finally, investigations of the excitation
energies of the transfer products should be studied with,
e.g., the density-constrained TDHF approach [35] (see
also [36]).

The calculations have been performed on the Centre de
Calcul Recherche et Technologie of the Commissariat à
l’Énergie Atomique, France. M. Dasgupta, M. Evers, D. J.
Hinde, D. Lacroix, and B. Avez are thanked for discussions
and a careful reading of the Letter.
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