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At low temperature the low end of the QCD Dirac spectrum is well described by chiral random matrix

theory. In contrast, at high temperature there is no similar statistical description of the spectrum. We show

that at high temperature the lowest part of the spectrum consists of a band of statistically uncorrelated

eigenvalues obeying essentially Poisson statistics and the corresponding eigenvectors are extremely

localized. Going up in the spectrum the spectral density rapidly increases and the eigenvectors become

more and more delocalized. At the same time the spectral statistics gradually crosses over to the bulk

statistics expected from the corresponding random matrix ensemble. This phenomenon is reminiscent of

Anderson localization in disordered conductors. Our findings are based on staggered Dirac spectra in

quenched lattice simulations with the SUð2Þ gauge group.
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The spectrum of the QCD Dirac operator contains im-
portant information regarding the properties of strongly
interacting physical systems. The statistical properties of
the spectrum completely determine the bulk thermodynam-
ical observables. The low end of the Dirac spectrum is
particularly important since that part dominates the quark
propagators. The statistics of low Dirac eigenvalues is fun-
damentally different in the low temperature chirally broken
phase and the high temperature chirally symmetric phase.
According to the Banks-Casher formula [1] the spectral
density around zero is proportional to the order parameter
of chiral symmetry breaking. Therefore in the chirally sym-
metric phase it vanishes whereas in the broken phase it is
nonzero. In the latter case random matrix theory (RMT)
provides an essentially complete statistical description of the
low lying part of the Dirac spectrum [2]. In the intermediate
volume, so-called epsilon regime the RMT behavior is well
understood analytically through an effective sigma model
description and numerically through lattice simulations.

In contrast, above the finite temperature transition Tc in
the chirally symmetric phase there is no well understood
statistical description of the low eigenvalues of the Dirac
operator. In this regime, lacking any analytical insight, one
can regard the Dirac operator as a randomly fluctuating
matrix of size going to infinity in the thermodynamic limit.
From this perspective there are two fundamentally differ-
ent possibilities for the spectrum of the Dirac operator. If
typical random fluctuations can freely mix eigenvectors,
eigenvectors become extended and the eigenvalue statistics
is described by the corresponding RMT. If on the other
hand, fluctuations in the matrix elements cannot mix the
eigenvectors, in some basis they become localized and the
eigenvalues become independent, obeying essentially
Poisson statistics. Lattice simulations can test which sce-
nario happens in reality.

Above Tc the spectral density vanishes at zero and
RMT has predictions for the eigenvalue statistics at such

a ‘‘soft edge’’ [3]. Lattice simulations, however, did not
find agreement with these predictions [4,5]. Another earlier
study [6] did not focus on the spectrum edge, but consid-
ered full Dirac spectra and found bulk RMT statistics for
the full spectrum. More recently the possibility of Poisson
eigenvalue statistics was suggested again in Ref. [7]. Based
on lattice simulations the authors argued that around Tc the
low temperature RMT statistics is gradually deformed
towards Poisson statistics. Reference [8], based again on
lattice simulations, found that although eigenmodes are
localized above Tc, localization is most likely a finite
volume artifact. This finding would disfavor the appear-
ance of Poisson statistics in the spectrum. Recently, using
overlap fermion lattice simulations, Poisson behavior was
found for the lowest two eigenvalues [9].
In the present Letter we offer a better understanding of

this rather unclear situation. We show that above Tc the
lowest part of the spectrum consists of statistically inde-
pendent eigenvalues obeying Poisson statistics and the
corresponding eigenvectors are extremely localized. Going
up in the spectrum the spectral density rapidly increases
and the eigenvectors get delocalized. At the same time the
spectral statistics gradually crosses over to the bulk statis-
tics expected in the corresponding random matrix en-
semble. We also show that the number of Poisson type
eigenvalues depends only on the physical temperature and
the physical spatial volume and not on the lattice spacing.
The phenomenon we report here is analogous to Anderson
localization occurring in crystalline conductors in the pres-
ence of disorder. In that case disorder causes the appear-
ance of localized electron states at the band edge, but for
sufficiently weak disorder states towards the band center
remain delocalized [10]. The corresponding eigenvalue
statistics changes from Poisson around the band edge to
random matrix statistics towards the band center [11].
At first we summarize the details of the numerical

simulations. The data are based on lattice simulations of
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the SUð2Þ gauge theory with Wilson plaquette coupling
� ¼ 2:6 and time extension Nt ¼ 4. This corresponds to a
temperature of T ¼ 2:6Tc, well above the finite tempera-
ture phase transition. We used the quenched approximation
(ignoring dynamical quarks) to make the scale setting
through the critical temperature simple and unambiguous.
The simulations were done at four different spatial vol-
umes, N3

s ¼ 163, 243, 323, 483. To assess what happens in
the continuum limit we included an additional Nt ¼ 6,
Ns ¼ 36, � ¼ 2:725 ensemble matched to the Ns ¼ 24
simulation in terms of physical box size and temperature,
but on a 1.5 times finer lattice. On these ensembles we
computed the 256 smallest positive eigenvalues of the
staggered Dirac operator. Because of the exact twofold
degeneracy of the eigenvalues this yields 128 independent
positive eigenvalues per configuration that we used for the
statistical analysis.

The low lying QCD Dirac spectrum is known to depend
strongly on the temporal fermionic boundary condition
through the lowest Matsubara frequency. The boundary
condition is effectively a combination of the gauge parallel
transporter along the closed time direction (Polyakov loop)
and the explicitly chosen antiperiodic boundary condition
[12]. In the quenched SUð2Þ gauge theory the Polyakov
loop Zð2Þ symmetry is spontaneously broken above Tc.
Although in the quenched theory the two sectors are
equivalent, here we only use configurations in the ‘‘physi-
cal’’ Polyakov loop sector, the one that would survive in
the presence of dynamical fermions. We use fermion
boundary conditions that are antiperiodic in the time di-
rection and periodic in all the spatial directions.

As a first step we studied the spatial localization of the
low eigenmodes. A possible way to measure that is through
the quantity

V c ¼
�X

x

ðc yc ðxÞÞ2
��1

; (1)

where c is a normalized eigenvector. V c essentially

measures the total volume occupied by c . This is seen
by noting that in the special case when c is constant in a
subvolume v of the total volume V and is zero elsewhere,
V c ¼ v [13]. Assuming that at high temperature eigen-

modes can maximally spread in the short time direction
one can define a length scale (in lattice units)

dc ¼
"
V c

Nt

#
1=3

(2)

characterizing the spatial extension of the eigenvectors. In
Fig. 1 we plot how this quantity changes in the spectrum.
We computed the average eigenmode size dc as a function

of the corresponding eigenvalue for different spatial
volumes. It is apparent that the lowest eigenmodes corre-
sponding to eigenvalues �a < 0:22 are very localized
and their spatial extension is independent of the box
size. Above that point the eigenvectors rapidly start to

delocalize and their spatial size becomes dependent on
the box size. This point in the spectrum is known as the
mobility edge in the context of Anderson localization.
The extremely stable localization of the smallest modes

with respect to increasing volume might seem to contradict
Ref. [8], arguing that localization is a finite volume artifact.
Note, however, that they define localization in terms of the
inverse participation ratio and call a state localized essen-
tially if it occupies a volume smaller than a fixed finite
fraction of the total volume. In contrast, the modes we call
localized occupy a fixed finite volume and therefore zero
fraction of the total volume in the thermodynamic limit.
Our definition of ‘‘localized mode’’ is thus more restrictive
than that of [8] but conforms with the literature on
Anderson localization where localization is understood to
be exponential.
Besides the localization of eigenvectors the other im-

portant factor determining how easily eigenvectors can mix
is the spectral density. A useful quantity that reflects the
combined effect of localization and spectral density can be
defined as follows. For each eigenvector c the participa-
tion ratioV c =V is an approximate measure of the fraction

of the total four-volume occupied by the eigenmode. We
call the cumulative volume fill fraction the sum of the
participation ratios of all the eigenvectors corresponding
to eigenvalues less than �. In Fig. 2 we show the volume fill
fraction as a function of �. In the lowest part of the
spectrum where the spectral density is small and eigenvec-
tors are localized the fill fraction is much smaller than
unity. These eigenvectors can in principle be produced
independently in different subvolumes, with no spatial
overlap. If this is the case the corresponding eigenvalues
are expected to be independently distributed and obey
Poisson statistics. In contrast, above �a > 0:28 the volume
fill fraction is much bigger than unity and the eigenvectors
here must strongly overlap. Therefore they can freely mix
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FIG. 1 (color online). The average linear extension of eigen-
vectors dc as a function of the corresponding eigenvalues.

The different symbols correspond to spatial box sizes Ns ¼
16, 24, 32, 48.
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and from this point up in the spectrum the eigenvalue
statistics is expected to be described by random matrix
theory. Between the two extremes there can be a transition
from Poisson to random matrix statistics.

A simple way of testing these expectations is to consider
the unfolded level spacing distribution computed sepa-
rately for eigenmodes in the above described regimes.
Unfolding is a simple transformation of the eigenvalues
commonly used in random matrix theory to extract univer-
sal spectral correlations that are independent of the spectral
density. Numerically we unfolded by ordering all the ei-
genvalues by magnitude on all configurations in the given
ensemble and mapping each eigenvalue to its rank order
normalized by the number of configurations in the given
ensemble. By construction the eigenvalues transformed in
this way have constant unit spectral density.

If the original eigenvalues are uncorrelated, the unfolded
level spacing distribution is expected to be a simple ex-
ponential PðxÞ ¼ e�x. In contrast, if the eigenvalues obey
random matrix statistics the unfolded level spacing distri-
bution should follow the so-called Wigner surmise of the
corresponding random matrix ensemble [2]. The staggered
Dirac operator with fermions in the fundamental represen-
tation of the SUð2Þ gauge group correspond to the chiral
symplectic random matrix ensemble and the Wigner sur-
mise in that case is [14]

PðxÞ ¼ 218

36�3
x4 exp

�
� 64

9�
x2
�
: (3)

In Fig. 3 we plot the unfolded level spacing distribution
averaged separately for the four regions indicated in Fig. 2.
For comparison we also show the exponential and Wigner
surmise distributions expected if the level statistics is
Poisson and random matrix, respectively. Going upwards
in the spectrum the transition from Poisson to random
matrix statistics is obvious.

The unfolded level spacing statistics between the first
and the second, the second and the third, etc., eigenvalues
separately was already computed in Ref. [5] and was found
to deviate slightly from the Wigner surmise. However,
Poisson statistics was not seen there because of the spatial
volumes much smaller than ours. Indeed, the spectral
density in the Poisson regime is so small that in a small
volume even the first few eigenvalues are in the random
matrix regime most of the time.
So far we discussed level spacing statistics for a given

spatial volume and coarseness of the lattice. For these
results to represent real physics it is important to check
what happens in the thermodynamic and in the continuum
limit. In the remainder of the Letter we address these two
questions.
Thermodynamic limit.—We have already seen that the

lowest eigenmodes are very localized and their spatial
extension is not affected by the volume of the box.
Therefore we expect that these modes occur independently
and their average number is proportional to the spatial
volume. More generally eigenvalues following any inter-
mediate statistics between Poisson and random matrix are
also expected to occur in numbers proportional to the
spatial volume. If this is true the statistics of eigenmodes
number n1 throughm1 in a spatial volume V1 should be the
same as that of eigenvalues n2 through m2 in a spatial

volume V2 provided that n1
n2
¼ m1

m2
¼ V1

V2
. We verified this

by comparing the unfolded level spacing distribution in

)d()c()b()a(

FIG. 2 (color online). The cumulative volume fill fraction for
the 243 � 4 ensemble. The unfolded level spacing distribution
will be computed separately in the four shaded spectral regions
marked by (a)–(d) (see Fig. 3).
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FIG. 3 (color online). The panels show the unfolded level
spacing distribution in different regions of the spectrum. The
labeling (a)–(d) corresponds to the regions indicated in Fig. 2
with the shaded areas. The curved lines are the exponential
distribution and the Wigner surmise.
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two different spatial volumes, Ns ¼ 24 and 32. In Fig. 4(a)
we compare the unfolded level spacing distribution of
eigenvalues 10–20 in the smaller volume and 24–47 in
the bigger volume and find good agreement. To demon-
strate that these eigenvalues fall in the intermediate statis-
tics regime we also plot the exponential and Wigner
surmise distributions with thin dashed and solid lines.
This shows that the density of eigenvalues with a given
intermediate statistics scales with the spatial volume, as
expected.

Continuum limit.—To see how this picture changes to-
wards the continuum limit we considered an additional
ensemble on a finer lattice. The parameters of that, Nt ¼
6, Ns ¼ 36, � ¼ 2:725 were tuned to match the physical
temperature and spatial volume of the 243 � 4 ensemble.
Since the average smallest eigenvalue changes roughly
with the smallest Matsubara frequency, it does not make
sense to compare statistics from the same region in the
spectrum of the two ensembles. Instead, we computed the
unfolded level spacing distribution of eigenvalues 10–20
on each configuration for both ensembles. As can be seen
in Fig. 4(b) there is perfect agreement between the two
ensembles.

This means that the deformation of the distribution from
Poisson to random matrix statistics occurs through a uni-
versal path independently of the lattice spacing. It also
implies that the number of very localized Poisson eigen-
modes is proportional to the physical spatial volume and
not the volume in lattice units. It could suggest that these
eigenmodes are localized on some physical gauge field
objects that survive the continuum limit with a finite physi-
cal density. This scenario is also supported by the fact that
the localization range of the eigenmodes in physical units,
computed from the quantityV c , was roughly the same on

the coarser and finer ensemble.
Discussion.—Low eigenmodes of the QCD Dirac opera-

tor are generally explained by mixing instanton and anti-
instanton zero modes that could also be natural candidates

to explain the localized modes. Assuming independently
occurring topological objects, the distribution of the num-
ber of zero modes of the overlap Dirac operator on these
ensembles can be used to estimate the total density of
(anti-)instantons. We found that their density is more
than an order of magnitude too small to explain the
Poisson modes. Regardless of the origin of the localized
modes, the fermion boundary condition clearly plays a
crucial role in their appearance because in the opposite
SUð2Þ Polyakov loop sector they are completely absent
[15]. We hope to return to a more detailed discussion of the
role of the boundary condition in a later publication.
Another important issue is how universal the appearance

of Poisson modes is. In Ref. [9] in a range of spatial
volumes the lowest two eigenvalues of the overlap Dirac
operator were seen to be Poissonian. We extended that
study to higher eigenvalues and verified that the overlap
spectrum also crosses over from Poisson to random matrix
statistics. (Details of this study will appear elsewhere.)
This means that the phenomenon we found does not rely
on a particular lattice fermion formulation.
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FIG. 4 (color online). The unfolded level spacing distribution
for two different spatial box sizes at fixed Nt (a) and for two dif-
ferentNt’s at fixed physical temperature and physical box size (b).
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