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The Nambu-Goto string in a three-dimensional (3D) Minkowski spacetime is quantized preserving

Lorentz invariance and parity. The spectrum of massive states contains anyons. An ambiguity in the

ground state energy is resolved by the 3DN ¼ 1 Green-Schwarz superstring, which has massless ground

states describing a dilaton and dilatino, and first-excited states of spin 1=4.
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A standard claim of string theory texts is that a free
string cannot be consistently quantized below its critical
dimension, preserving Lorentz invariance, without the in-
troduction of an additional ‘‘Liouville’’ variable that is
absent classically. Here we show that strings in a three-
dimensional (3D) spacetime are an exception to this rule.
Specifically, we show that both the 3D Nambu-Goto string
and the N ¼ 1 3D Green-Schwarz (GS) superstring [1]
may be quantized, preserving both Lorentz invariance and
parity, without the introduction of any additional variables.
It turns out that the spectrum of these strings includes
anyons, i.e., particles of spin s such that 2s is not an integer
[2,3]. Specifically, we find anyons in the bosonic string
spectrum at level 2 or 3, depending on the choice of ground
state energy. The superstring is massless in its ground state,
has spin 1=4 at level 1 and other ‘‘semions’’ (particles of
spin 1=4þ n=2 for integer n) at level 2.

One may ask why the existence of these new 3D quantum
strings has not previously beennoticed (wedonot say ‘‘string
theories’’ because we do not address here issues of modular
invariance or interactions). Part of the answer to this question
is surely that a manifestly covariant description of anyons
requires fields in representations of some multiple cover of
Slð2;RÞ. The universal cover is required for irrational spin
(and potentially for an infinite number of rational spins)
implying infinite-component fields [4,5]. However, such
fields do not arise in any of the standard approaches to
covariant quantization. Although this limitation may be cir-
cumvented in the future, at present it is only in the light-cone
gauge that one can easily see all possibilities for a consistent
quantum theory, and that is the method used here.

We begin with the Hamiltonian form of the Nambu-Goto
action for a closed relativistic 3D string of tension T in
terms of the canonical three-vector variables (X, P), which
are functions of the world sheet time � and the string
coordinate �� �þ 2�:

S ¼
Z

d�
I d�

2�
f _X�P� � 1

2
‘½P2 þ ðTX0Þ2� � uX0�P�g:

(1)

The overdot and prime indicate derivatives with respect to
� and �, respectively, and ‘ and u are Lagrange multipliers
for the Hamiltonian and string-reparametrization con-
straints, respectively. This action involves the Minkowski
spacetime metric (with ‘‘mostly plus’’ signature) via the
scalars P2 and ðX0Þ2. The standard Nambu-Goto action is
recovered by elimination of the three-momentum P fol-
lowed by elimination of ‘ and then u. In addition to the
gauge invariances associated to the constraints, the action
is invariant under the Poincaré transformations generated
by the Noether charges

P �¼ 1

2�

I
d�P�; J �¼ 1

2�

I
d�½X^P��; (2)

where ½U ^ V�� ¼ "���U�V� for any two three-vectors U
and V, and the invariant antisymmetric tensor " is defined
such that "012 ¼ 1.
We now introduce light-cone coordinates

X� ¼ 1ffiffiffi
2

p ðX1 � X0Þ; P� ¼ 1ffiffiffi
2

p ðP1 � P0Þ; (3)

and set X2 ¼ X and P2 ¼ P. It is convenient to define

xð�Þ ¼ 1

2�

I
d�X; x�ð�Þ ¼ 1

2�

I
d�X�;

pð�Þ ¼ 1

2�

I
d�P; pþð�Þ ¼ 1

2�

I
d�Pþ (4)

and

�X ¼ X� x; �X� ¼ X � x�;
�P ¼ P� p; �Pþ ¼ Pþ � pþ:

(5)

The light-cone gauge is defined by the choice

Xþ ¼ �; P� ¼ p�ð�Þ; (6)

where p�ð�Þ is a nonzero function of � only. This choice
leaves only the residual global gauge invariance that shifts
the origin of the angular string coordinate �. In this gauge,
the Hamiltonian constraint imposed by ‘ may be solved
for Pþ:
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Pþ ¼ � 1

2p�
½P2 þ ðTX0Þ2�: (7)

One also finds that �X� is a Lagrange multiplier imposing
the constraint u0 ¼ 0, which has the solution u ¼ u0ð�Þ.
The final result is the Lagrangian

L¼
�
_xpþ _x�p� þ

I d�

2�
_�X �P

�
�H� u0

I d�

2�
�X0 �P; (8)

where the Hamiltonian is

H ¼ �pþ ¼ 1

2p�

�
p2 þ

I d�

2�
f �P2 þ ðT �X0Þ2g

�
: (9)

As expected, there is a residual global constraint imposed
by u0. In the light-cone gauge, the Poincaré Noether
charges of (29) are

P ¼ p; P� ¼ p� Pþ ¼ �H;

J ¼ x�p� þ �H; Jþ ¼ �p� xp�

J� ¼ �x�p� xH þ
I d�

2�
½ �X �Pþ � �X� �P�: (10)

The two Poincaré invariants are

�P 2 � M2 ¼
I d�

2�
½ �P2 þ ðT �X0Þ2�;

P � J � � ¼ p�
I d�

2�
½ �X �Pþ � �X� �P�:

(11)

We now Fourier expand the canonical pair ( �X, �P) by
writing

�P� T �X0 ¼ ffiffiffiffiffiffi
2T

p X1
n¼1

½ein��n þ e�in���
n�;

�Pþ T �X0 ¼ ffiffiffiffiffiffi
2T

p X1
n¼1

½ein� ~��
n þ e�in� ~�n�:

(12)

The Lagrangian (8) becomes

L ¼ _xpþ _x�p� þ i
X1
n¼1

n�1ð _�n�
�
n þ _~�n ~�

�
nÞ

� 1

2p�
ðp2 þM2Þ þ u0

X1
n¼1

ð��
n�n � ~��

n ~�nÞ; (13)

where

M 2 ¼ 2T
X1
n¼1

ð��
n�n þ ~��

n ~�nÞ: (14)

Observe that the other Poincaré invariant � of (11)
depends on �X� as well as the canonical variables of the
final action, but the equation of motion of u in the original
action reduces in the light-cone gauge to

p�ð �X�Þ0 ¼ � �X0P; (15)

which allows us to express �X� in terms of the Fourier
coefficients of ( �X, �P). We pass over the details, which are
similar to those for the critical string [6]; the final result is

� ¼ ffiffiffiffiffiffi
2T

p ð�þ ~�Þ; (16)

where � depends only on the �n and ~� is the same
expression but in terms of the ~�n. Explicitly,

� ¼ X1
n¼1

i

n
ð��

n	n � �n	
�
nÞ; (17)

where

	n ¼ 1

2

Xn�1

m¼1

�m�n�m þ X
n>m

�m�
�
n�m; (18)

and similarly for ~�.
To quantize we promote the canonical variables to op-

erators satisfying canonical commutation relations. The
nonzero commutators are

½x�; p�� ¼ ½x; p� ¼ i ½�n;�
y
n � ¼ ½~�n; ~�

y
n � ¼ n: (19)

The constraint imposed by u0 becomes the level-matching
condition in the quantum theory:

N ¼ ~N; N ¼ X1
n¼1

�y
n�n; ~N ¼ X1

n¼1

~�y
n ~�n: (20)

Taking this into account, the mass-squared operator is

M 2 ¼ 2Tð2N � aÞ; (21)

where a is an arbitrary constant arising from operator
ordering ambiguities. Similarly, the operator � is as in

(16) but now with ��
n ! �y

n and hence 	�
n ! 	y

n , and

similarly for ~�.
The quantum Lorentz generators are

J ¼ 1

2
fx�; p�g þ �H; Jþ ¼ �p� xp�;

J� ¼ �x�p� 1

2
fx;Hg þ�=p�: (22)

In principle, there are operator ordering ambiguities in
these expressions but they are fixed by the requirements
of hermiticity and closure of the Lorentz algebra. It is
straightforward to verify that the charges as given satisfy
the required commutation relations:

½J ;J�� ¼ �iJ�; ½Jþ;J�� ¼ iJ : (23)

This should not be a surprise because the ‘‘dangerous’’
commutators vanish ‘‘by default’’ in three dimensions.
Because the Poincaré invariant operators M2 and �

commute, they may be simultaneously diagonalized. It
follows that the space spanned by the level-N states is an
invariant subspace of�. At levelsN ¼ 0, 1 there is a single
state that is annihilated by �, so nonzero eigenvalues of �
can occur only for N � 2. The eigenvalues of � at each
level divided by the mass of the level are the ‘‘relativistic
helicities’’ at that level. The four states at level 2 have
helicities
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�
0; 0;� 3ffiffiffiffiffiffiffiffiffiffiffiffi

4� a
p

�
; (24)

which implies that a < 4. The 9 states at level 3 have
helicities0
@0;0;0;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
179

12ð6�aÞ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
179

12ð6�aÞ

s
;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
179

3ð6�aÞ

s 1
A: (25)

Observe that nonzero helicities appear in parity doublets of
opposite helicity, so parity is preserved by the quantization.
For any a 	 4 there is an anyon in either level 2 or level 3.
It would be natural to choose a ¼ 0, so that the level-0
state is massless; in this case we have a massive scalar at
level 1, spin 3=2 at level 2 and irrational spin anyons at
level 3. Another natural choice is a ¼ 2 because this makes
the level-0 state a tachyon and the level-1 state a massless
scalar, which might be interpretable as a dilaton, as for the
critical bosonic string; in this case there is a massive state
with irrational spin at level 2. We expect that irrational
spins are generic in higher levels.

The freedom in the choice of ground state energy might
be considered a defect of the bosonic model. In any case,
this freedom is absent from the 3DN ¼ 1GS superstring,
to which we now turn. The action may be constructed by
first making the replacement

dX� ! �� � dX� þ i ����d� (26)

where �� are real 3D Dirac matrices and � is a real
anticommuting two-component spinor field, with

Majorana conjugate �� ¼ �T�0. Then we add to the action
a Wess-Zumino term for the supertranslation algebra asso-
ciated to the closed super-Poincaré invariant superspace

three-form ��d ����d�. This gives rise to the following

‘‘quasi-Hamiltonian’’ form of the action

S½X;P;‘;u� ¼
Z

d�
I d�

2�
f��

� P� � 1

2
‘½P2 þðT��Þ2�

�u�
�
�P� þ iTð _X� �����

0 �X0� ����
_�Þg;

(27)

where �� and �� are the d� and d� components of the
world sheet one-form induced by�. The term linear in T is
the Wess-Zumino term, and we have chosen its coefficient
to ensure invariance of the action under the following
fermionic gauge invariance (‘‘
 symmetry’’) with anticom-
muting Majorana spinor parameter 
:

�
� ¼ ��ðP� � T�
�
�Þ
;

�
X
� ¼ �i �����
�;

�
P� ¼ 2iT ��0���
�; �
u ¼ �T�
‘;

�
‘ ¼ �4i �
½ _�þ ð‘T � uÞ�0�:

(28)

Observe that ��ðP� � T�
�
�Þ has zero determinant on the

surface defined by the constraints. This means that only

one of the two independent components of 
 has any effect,
so that only one real component of � can be ‘‘gauged
away’’. The Poincaré Noether charges are now

P� ¼
I d�

2�
fP� þ iT �����

0g;

J � ¼
I d�

2�

�
½X ^ ðPþ iT ����0Þ�

þ i

2
���ðP� TX0Þ

�
�
: (29)

The supersymmetry Noether charges are (� ¼ 1, 2)

Q � ¼ ffiffiffi
2

p I d�

2�

�
½P� �TX0

������ i

2
ð ���Þ�0

�
�
: (30)

The 
 symmetry variation of all these charges vanishes on
the constraint surface.
To go to the light-cone gauge we proceed as before but

now we also fix the 
 symmetry by imposing the usual
condition [1]

�þ� ¼ 0; �� ¼ 1ffiffiffi
2

p ð�1 � �0Þ: (31)

For the representation �� ¼ ði�2; �1; �3Þ of the 3D Dirac
matrices, this condition implies that

� ¼
�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
2

p
p�

q ��
�
0

�
(32)

for some anticommuting world sheet function �ð�; �Þ. As
for the bosonic variables, it is convenient to define

�� ¼ �� #; #ð�Þ ¼ 1

2�

I
d��: (33)

There should be no confusion with the notation for a
conjugate spinor as � is not a two-component spinor.
Proceeding as before, but now with the additional Fourier
expansion

�� ¼ X1
n¼1

½ein��n þ e�in���n�; (34)

we end up with the Lagrangian

L¼ _xpþ _x�p�þ i

2
# _#þX1

n¼1

½n�1ð _�n�
�
nþ _~�n ~�

�
nÞþ��n _�n�

� 1

2p�
ðp2þM2Þþu0

X1
n¼1

ð��
n�n� ~��

n ~�nþn��n�nÞ;

(35)

where

M 2 ¼ 2T
X1
n¼1

ð��
n�n þ ~��

n ~�n þ n��n�nÞ: (36)
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The supersymmetry charges in the light-cone gauge are

Q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1ffiffiffi
2

p
p�

s �
p# þ ffiffiffiffiffiffi

2T
p X1

n¼1

ð�n�
�
n þ ��

n�nÞ
�

Q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
p�

q
#:

(37)

The Lorentz Noether charges in the light-cone gauge are as
in (10) but with a different expression for �. We will not
give this expression here because the super-Poincaré in-
variant is not � � P � J but rather

� � P � J þ i

4
�QQ: (38)

To compute � we need the analog of (15), which is

p�ð �X�Þ0 ¼ � �X0Pþ i

2
� ��0: (39)

We again pass over the details; the final result is

� ¼ ffiffiffiffiffiffi
2T

p �
�þ ~�þ X1

n¼1

i

n
ð��

nn � �n
�
nÞ
�
; (40)

where � and ~� are as before, and

n ¼
Xn�1

m¼1

ðn�mÞ�m�n�m þ X
m>n

�
m� n

2

�
��m�n�m: (41)

Note that although the Poincaré invariant� depends on the
fermion zero mode #, this mode cancels from the super-
Poincaré invariant �.

We quantize as before, replacing the Grassmann odd
variables by operators obeying canonical anticommutation
relations. The nonzero anticommutators are

f#;#g � 2#2 ¼ 1; f�n; �yn g ¼ 1: (42)

The level-matching constraint is now

~N ¼ N þ �; � ¼ X1
n¼1

n�yn�n: (43)

Taking this into account, one finds that

fQ�;Q	g ¼
ffiffiffi
2

p
H p

p
ffiffiffi
2

p
p�

 !
¼ ð���0Þ�	P�; (44)

provided that the ground state energy is zero, which means
that

M 2 ¼ 4TðN þ �Þ ¼ 4T ~N: (45)

The Lorentz charges close under commutation exactly as
for the 3D bosonic string, and it may be verified that they
have the expected commutators with the supersymmetry
charges: ½J�;Q� ¼ � i

2 �
�Q.

Because of the fermion zero mode, there is a double
degeneracy at all levels, and because this zero mode can-
cels from � the degeneracy is that implied by the super-
symmetric pairing of one bose with one Fermi state,

corresponding to the�1 eigenspaces of
ffiffiffi
2

p
#. In particular,

the ground state is doubly degenerate, and we may interpret
the corresponding massless particles in the spectrum as a
dilaton and dilatino; note that although helicity is not
defined for massless states, there is still a distinction be-
tween bosons and fermions [2,7]. This result is consistent
with what one would expect from the low energy effective
supergravity of a 3D N ¼ 1 superstring theory because
neither the metric nor a two-form potential propagate
modes in this context.
All higher levels are massive and the states at any given

level span an invariant subspace of �, the eigenvalues of
which are the superhelicities after division by the mass of
the level. The superhelicity is just the average of the two
helicities in a supermultiplet, which differ by 1

2 , and non-

zero superhelicites appear in parity doublets of opposite
sign. At level 1 there are four states, which combine into
two massive supermultiplets of superhelicity zero, each of
which contains helicities� 1

4 . At level 2 there are 16 states,

and hence 8 eigenvalues of �. Four are zero, giving four
spin- 14 particles of helicities � 1

4 . The four nonzero eigen-

values of � are ( 32 ,
3
2 , � 3

2 , � 3
2 ), corresponding to doubly

degenerate supermultiplets of helicities ( 74 ,
5
4 ) and

(� 7
4 , � 5

4 ). At levels 1 and 2 we thus find semion super-

multiplets, which were first investigated in Ref. [8]. At
higher levels we expect generic anyon supermultiplets, see,
e.g., Ref. [9].
There is a classical 3D N ¼ 2 GS superstring and we

believe that our quantum results will extend to this case. If
so, there will be four massless states, interpretable as a
dilaton and axion and their superpartners. Of course, it
remains to be seen whether any of these free quantum 3D
strings can interact to yield new 3D string theories.
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