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Given a single copy of an unknown quantum state, the no-cloning theorem limits the amount of

information that can be extracted from it. Given a gapped Hamiltonian, in most situations it is impractical

to compute properties of its ground state, even though in principle all the information about the ground

state is encoded in the Hamiltonian. We show in this Letter that if you know the Hamiltonian of a system

and have a single copy of its ground state, you can use a quantum computer to efficiently compute its local

properties. Specifically, in this scenario, we give efficient algorithms that copy small subsystems of the

state and estimate the full statistics of any local measurement.
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Introduction.—One of the fundamental problems of sta-
tistical mechanics and condensed matter is to characterize
ground states of Hamiltonians. If we know the Hamiltonian
of a system, we can in principal learn anything we want
about the ground state by exact diagonalization. But exact
diagonalization is too slow to use for all but the smallest
systems, and it is widely believed to be hard to find
properties of ground states of generic Hamiltonians on
large systems.

On the other hand, if we are somehow given many
independent copies of the ground state of some system,
we can learn properties of that state using standard tomog-
raphy algorithms. These algorithms do not take advantage
of the fact that the Hamiltonian is known.

In this Letter, we present tomography algorithms that
take advantage of our knowledge of the Hamiltonian H of
the system and only require a single copy of the ground
state. The core of our approach is a method of copying
small subsystems of the ground state jc i of a Hamiltonian
without damaging the original state. Our procedure does
not violate the no-cloning theorem (which only applies to
completely unknown states) because our state jc i is
known to be the ground state of H.

To motivate our algorithm, consider a classical problem.
Suppose that there is some unknown n-bit string z ¼ zAzB,
where zA is the first n� k bits of z and zB is the last k bits.
Suppose further that there is a function

fðxÞ ¼
�
1 if x ¼ z;
0 otherwise

on n-bit strings that tests whether they are equal to z. If we
are given zA and the ability to evaluate f, we can find z by
randomly guessing: we pick a random k-bit string xB and
evaluate fðzAxBÞ, repeating until we get f ¼ 1. This finds z
in expected time 2k.
Our main algorithm, quantum state restoration, is a

straightforward quantum generalization of this classical
algorithm, which surprisingly works even on entangled
states. If jc i lives in the Hilbert space H A �H B, our
algorithm takes as input the part of jc i that lives in sub-
system A and uses phase estimation on H to produce as
output the state jc i in expected time OðpolyðdimH BÞÞ. It
works by randomly guessing the part of jc i that lives in
subsystem B and measuring if the resulting state is the
ground state of H . On a successful iteration (i.e., if we
find that we are in the ground state), then we have recov-
ered jc i. On a failed iteration, there is minimal damage to
the part of the state in subsystem A and we can try again.
This can be used to copy small subsystems of jc i: if jc i

has the reduced density matrix �B on a small subsystem B,
we can set aside subsystem B and then use state restoration
to extend subsystem A to the full state jc i. We are left with
jc i and a mixed state �B. If we use this to obtain multiple
copies of �B, we can perform tomography on subsystem B.
We call this application single-copy tomography. We also
give a reduction from estimating the statistics of a general
POVM (positive operator value measurement) to single-
copy tomography with running time polynomial in the
number of POVM operators. The reduction is applicable
even if the POVM includes noncommuting operators.
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Quantum state restoration applies more generally than
just to ground states: even if jc i is not known to be the
ground state of any particular Hamiltonian, we can use our
algorithms if we can efficiently measure jc ihc j by some
other means.

Quantum state restoration.—Quantum state restoration
takes as input a description of a Hamiltonian H and a large
subsystem of the ground state jc i (this subsystem could
be, for example, the first n� k qubits of the n qubit state
jc i) and outputs the full state jc i. In this section we first
describe how to use the Hamiltonian to measure the op-
erator P ¼ jc ihc j and then we describe the algorithm for
quantum state restoration (which uses this measurement as
a subroutine).

Using H to measure the projector jc ihc j.—Using the
description of the Hamiltonian H, we can measure the
operator P ¼ jc ihc j on any state j�i. We do this by using
two extra quantum registers: one has enough digits to store
the eigenvalues ofH, and the other is a single qubit. We set
both registers to zero, giving

j�ij0ij0i:
We then use phase estimation to compute the energy:

X
�ij�iijEiij0i;

where the �i are the (unknown) coefficients of j�i in the
energy eigenbasis, j�ii are eigenstates in increasing order
of energy. For each i, Ei is the energy of j�ii. (This means
that jEii is a quantum state that contains a number it is not
an energy eigenstate ofH.) We now apply a NOToperator to
the third register, conditioned on the second register being
greater than E0. This gives

�0j�0ijE0ij0i þ
X
i>0

�ij�iijEiij1i:

We now uncompute the phase estimation (that is, we apply
the inverse operation), giving

�0j�0ij0ij0i þ
X
i>0

�ij�iij0ij1i:

The second register is now unentangled with the rest of the
system, so we can discard it, and measure the third register.
Noting that j�0i ¼ jc i and P

i>0�ijc ii ¼ P?j�i, we see
that this procedure effectively measures the operator P.
Using standard phase estimation, we will have a nonnegli-
gible probability of error, but we can use standard tech-
niques [1,2] to make the error exponentially small.

Algorithm for quantum state restoration.—The idea be-
hind quantum state restoration is that any state jc i on a
Hilbert space H A �H B (where d is the dimension of
H B) can be Schmidt decomposed as

jc i ¼ X�
i¼1

ffiffiffiffiffi
pi

p juiijvii

where � is the Schmidt rank of jc i with respect to this
decomposition. Note that � � d. The initial mixture �A ¼
TrBjc ihc j has all of its support on the Schmidt basis
spanfjuiig. Starting from �A, we can construct the state
�A � I

d onH A �H B. We now measure the projector P. If

we obtain the outcome 1, then we are left with the state jc i
If not, we discard (i.e., trace out) H B, leaving a state on
H A that still has all of its support on the Schmidt basis. We
then try again until we obtain the outcome 1.
We now explicitly define the quantum state restoration

algorithm.
(1) Start with the mixture

�A ¼ TrBjc ihc j:

as well as an extra register in the Hilbert space H B.
(2) Set the extra register to the fully mixed state (for

example, by replacing it with a random state or by applying
a random unitary). The state of the system is now

�A � I
d
:

(3) Measure the projector P ¼ jc ihc j. If the outcome is
þ1 then you are done: the state of the system is jc i. If not,
return to step 2.
This algorithm requires an expected number of iterations

�d � d2.
In the simple case where all of the pi are equal, then the

initial state �A is the fully mixed state over the spanfjuiig.
In this case, if you measure 0 in step 3, the density matrix
left in register A after tracing out register B is unchanged.
The algorithm terminates with probability 1

�d on each

iteration, finishing in an expected number of iterations
�d. If the pi are not all equal, then the algorithm can reach
bad states where most of the weight is on low-weight
elements of the Schmidt basis. When this happens, the
chance of success on any given iteration drops (see Fig. 1
for an example), but the probability of reaching these bad
states decreases with the corresponding pi. Surprisingly,
these effects exactly cancel, and the expected number of
iterations required to restore the state is �d regardless of
the values of the pi.
To prove this, we define the map

F0ð�Þ ¼ TrB

�
ð1� jc ihc jÞ

�
� � I

d

�
ð1� jc ihc jÞ

�

F0ð�Þ is the unnormalized density matrix obtained by
applying steps 2 and 3 of the algorithm to the state �,
conditioned on the measurement outcome 0. We also define
Tð�Þ to be the expected number of measurements used in
the algorithm if we start with the state �. In the supple-
mentary material [3] we show that Tð�Þ is linear (To
extend Tð�Þ to all nonnegative operators �, we define
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Tð�Þ ¼ Tr�Tð�=Tr�Þ). We are interested in the quantity
Tð�AÞ, which we write as

Tð�AÞ ¼
X�
i¼1

piTðjuiihuijÞ: (1)

We expand TðjuiihuijÞ by conditioning on the outcome of
the first measurement

TðjuiihuijÞ
¼ 1þ TðF0ðjuiihuijÞÞ

¼ 1þ T

�
juiihuij � 2

pi

d
juiihuij þ pi

d

X�
j¼1

pjjujihujj
�

¼ 1þ
�
1� 2

pi

d

�
TðjuiihuijÞ þ pi

d

X�
j¼1

pjTðjujihujjÞ:

Using (1), this can be transformed into

2piTðjuiihuijÞ � piTð�AÞ ¼ d:

Summing both sides over i ¼ 1; . . . ; � using
P

pi ¼ 1 and
(1) again, we obtain

Tð�AÞ ¼ �d;

which is the desired result. More efficient algorithms and a
complete analysis can be found in the supplementary ma-
terial [4].

Single-copy tomography and estimation of measurement
statistics.—Quantum state restoration can be used to
perform tomography on a single copy the ground state of

a gapped Hamiltonian. We can perform several different
types of tomography, and we give algorithms for some
types that are faster than quantum state restoration.
In the simplest case, we have a gapped Hamiltonian H

and a single copy of its (unknown) ground state jc i. As
before, we can useH to measure the projector P ¼ jc ihc j
and we would like to estimate properties of the density
matrix �B ¼ TrAjc ihc j for a subsystem B. We can do this
by using quantum state restoration to prepare many un-
entangled states, each with (independent) density matrices
�B. We can then use any standard state tomography algo-
rithm on these states. Alternatively, we can use the tech-
niques below to estimate an informationally complete
POVM on subsystem B.
We want to estimate the probabilities qi ¼ Tr½jiiBB �

hijjc ihc j� of obtaining the outcome i if one were to
measure subsystem B of jc i in the orthonormal basis
fjiiBg. The simplest way to estimate these statistics is to
repeat the measurement many times, running quantum
state restoration after each measurement, and to estimate
qi as

mi

N where mi is the number of appearances of outcome

i in N trials. In the supplementary material [3], we present
two algorithms that estimate the values fqig more effi-
ciently by applying ideas from the QMA (quantum
Merlin Arthur) amplification schemes presented by
Marriott and Watrous [5] and Nagaj et al. [6]. Fixing a
precision � > 0 and an error probability � > 0, the algo-
rithm produces estimates qesti such that jqesti � qij< �
for all i with probability at least 1� � in expected time
Oðd� logðd�ÞÞ (measured in number of uses of P).

We can use any of these algorithms to estimate the
statistics of a general measurement on a single copy of a
ground state j�i. This is because a general POVM mea-
surement can be reduced to a measurement of a subsystem
in an orthogonal basis, as we now review. Wework in a two
register Hilbert space: register A can hold j�i and register
B is a d-dimensional ancilla. Given an efficiently imple-
mentable POVM fEig where i 2 f1; . . . ; dg, we can imple-
ment a unitary operator U such that

Uðj�iAj1iBÞ ¼
Xd
i¼1

ð ffiffiffiffiffi
Ei

p j�iAÞjiiB
for any state j�i. The probability of measurement outcome
i when the POVM is measured on j�i is equal to

h�jEij�i ¼ Tr½�BjiiBBhij�

where �B ¼ TrA½Uj�iAj1iBBh1jAh�jUy�. If we define

jc i ¼ Uj�iAj1iB P0 ¼ jc ihc j ¼ UPUy

then �B ¼ TrAjc ihc j, jc i can be efficiently prepared
(starting from j�i) and P0 can be efficiently measured.
We can now estimate the measurement statistics of sub-
system B of jc i using the projector P0 in the computational
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FIG. 1. Probability of restoring the state on a given iteration
conditioned on all previous iterations failing. Conditioned
on failing every time, the first two flat regions are metastable

states and the third is stable. In this graph, jc i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 10�2 � 10�3

p j0iAj0iB þ ffiffiffiffiffiffiffiffiffiffiffi
10�2

p j1iAj1iB þ ffiffiffiffiffiffiffiffiffiffiffi
10�3

p j2iAj2iB,
dimH B ¼ 10, and the expected number of iterations required
is 30.
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basis, yielding the probabilities h�jEij�i ¼ Tr½jiihij�0
B�.

After estimating the probabilities, we uncompute U to
recover the initial state j�i.

Applications of quantum state restoration and single-
copy tomography.—Quantum computers offer potentially
exponential speedups in simulating quantum mechanics,
but some problems are still hard. For example, preparing
ground states of many-body systems generically takes
exponential time in the number of particles. Nonetheless,
for sufficiently small systems with large enough energy
gaps, algorithms such as [7] may run quickly enough to
prepare a single copy of the ground state. Single-copy
tomography allows us to make multiple tomographic mea-
surements (even of noncommuting operators) after prepar-
ing only a single copy of the ground state. This gives a
speedup over traditional tomography.

In addition, single-copy tomography could be useful to
characterize the ground state during adiabatic evolution.
This information could be used in real time to guide the
choice of path for an adiabatic algorithm.

In the introduction, we mentioned that quantum state
restoration also works on states that are not ground states
but are instead verified by some quantum algorithm. One
example of this type of state is quantum money [8–12].
Quantum money is meant to be the quantum analog of the
everyday money we hold in our pocket, except that it
should be secure against forgery by a counterfeiter with
limited computational resources. One type of quantum
money scheme works as follows. The mint generates bills
(a bill is a quantum state jc pi paired with a classical serial
number p), and publishes a verification algorithm which,
taking as input the serial number p of a quantum money
state jc pi, implements the measurement of jc pihc pj.
Using this verification algorithm, anyone (for example a
merchant) can check that a bill is authentic. In this sce-
nario, a would-be forger with one quantum bill can use
quantum state restoration to efficiently learn properties of
the quantum money state jc pi. Quantum money protocols

must therefore be secure against this type of attack.
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