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Quantum discord characterizes ‘‘nonclassicality’’ of correlations in quantum mechanics. It has been

proposed as the key resource present in certain quantum communication tasks and quantum computational

models without containing much entanglement. We obtain a necessary and sufficient condition for the

existence of nonzero quantum discord for any dimensional bipartite states. This condition is easily

experimentally implementable. Based on this, we propose a geometrical way of quantifying quantum

discord. For two qubits this results in a closed form of expression for discord. We apply our results to the

model of deterministic quantum computation with one qubit, showing that quantum discord is unlikely to

be the reason behind its speedup.
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Introduction.—Quantum states of a composite system
can be divided into entangled and separable ones.
Entangled states display ‘‘nonlocal features’’ violating
Bell’s inequalities [1] and are considered a necessary re-
source for quantum communication and pure quantum
computation allowing computational speedup over the
best classical algorithm [2]. On the contrary, separable
states are generally considered as purely classical,
since they do not violate Bell’s inequalities and can be
prepared by local operations and classical communication.
However, it is valid to ask if highly mixed states, and, in
particular, separable states, are completely useless from a
quantum information perspective. Recent investigations
give compelling evidence that this is not the case. A highly
mixed state in the deterministic quantum computation with
one qubit (DQC1) [3] is believed to perform a task ex-
ponentially faster than any classical algorithm (‘‘without
containing much entanglement’’). Furthermore, it has been
shown that even some separable states contain nonclassical
correlations [4,5] and can create an advantage for comput-
ing and information processing tasks over their classical
counterparts [6–11].

The ‘‘nonclassicality’’ of bipartite correlations is mea-
sured via quantum discord [4]—the discrepancy between
quantum versions of two classically equivalent expres-
sions for mutual information. Recently, it has been
shown that almost all quantum states have nonvanishing
discord [12]. Quantum discord was proposed as a figure
of merit for characterizing the nonclassical resources
present in the DQC1 [10]. It has been shown that an
initial zero-discord system-environment state is a neces-
sary and sufficient condition for completely positive map
evolution of the system when the environment is traced
out [13,14]. Furthermore, in Ref. [15] it is demonstrated

that if the state can be locally broadcasted, it has vanish-
ing discord.
Despite increasing evidence for the relevance of quan-

tum discord in describing nonclassical resources in infor-
mation processing, there is no direct criterion to verify the
presence of discord in a given quantum state. Its evaluation
involves optimization procedure, and analytical results are
known only in a few cases [16]. In this Letter we derive the
necessary and sufficient condition for nonvanishing quan-
tum discord. The criterion is simple and also experimen-
tally friendly, since it can be evaluated directly from a (sub)
set of measurements that are standard for quantum state
tomography. Based on this, we introduce the geometrical
measure of discord and derive an explicit expression for the
case of two qubits. Finally, we give arguments that ques-
tion the appropriateness of quantum discord to describe the
nonclassical resource in the DQC1 model.
Quantum discord.—Correlations between two random

variables of classical systems A and B are in information
theory quantified by the mutual information IðA:BÞ ¼
HðAÞ þHðBÞ �HðA; BÞ. If A and B are classical systems,
then Hð�Þ stands for the Shannon entropy HðpÞ ¼
�P

ipi logpi, where p ¼ ðp1; p2; . . .Þ is the probability
distribution vector, while Hð:; :Þ is the Shannon entropy
of the joint probability distribution pij. For quantum sys-

tems A and B, function Hð�Þ denotes the von Neumann
entropyHð�Þ ¼ �Tr� log�, where � is the density matrix.
In the classical case, we can use the Bayes rule and find
an equivalent expression for the mutual information
IðA:BÞ ¼ HðAÞ �HðAjBÞ, where HðAjBÞ is the Shannon
entropy of A conditioned on the measurement outcome
on B. For quantum systems, this quantity is different
from the first expression for the mutual information and
the difference defines the quantum discord.
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Consider a quantum composite system defined by the
Hilbert space H AB ¼ H A �H B. Let dimensions of the
local Hilbert spaces be dimHA ¼ dA and dimHB ¼ dB,
while d ¼ dimHAB ¼ dAdB . Given a state � (density
matrix) of a composite system, the total amount of correla-
tions is quantified by quantum mutual information [17]:

Ið�Þ ¼ Hð�AÞ þHð�BÞ �Hð�Þ; (1)

where Hð�Þ is the von Neumann entropy and �A;B ¼
TrB;Að�Þ are reduced density matrices. A generalization of

the classical conditional entropy is Hð�BjAÞ, where �BjA is

the state ofB given ameasurement onA. By optimizing over
all possible measurements in A, we define an alternative
version of the mutual information

QAð�Þ ¼ Hð�BÞ �min
fEkg

X
k

pkHð�BjkÞ; (2)

where �Bjk ¼ TrAðEk � 1B�Þ=TrðEk � 1B�Þ is the state of
B conditioned on outcome k inA, and fEkg represents the set
of positive operator valued measure elements. The discrep-
ancy between the two measures of information defines the
quantum discord [4,5]:

DAð�Þ ¼ Ið�Þ �QAð�Þ: (3)

The discord is always non-negative [4] and reaches zero for
the classically correlated states [5].Note that discord is not a
symmetric quantity DAð�Þ � DBð�Þ and DA refers to the
‘‘left’’ discord, while DB refers to the ‘‘right’’ discord. The
state � for which DAð�Þ ¼ DBð�Þ ¼ 0 is completely clas-
sically correlated in the sense of [18,19]. From now on,
whenwe refer to the discordwemean the ‘‘left’’discordDA.

To give an example of a state with nonvanishing discord,
consider the two-qubit separable state in which four non-
orthogonal states of one qubit are correlated with four
nonorthogonal states of the second qubit:

1
4ðj0ih0j � jþihþj þ j1ih1j � j�ih�j þ jþihþj � j1ih1j

þ j�ih�j � j0ih0jÞ: (4)

Unlike the state above, one can show that the state � is of
zero discord if and only if there exists a von Neumann
measurement f�k ¼ jc kihc kjg such that [20]X

k

ð�k � 1BÞ�ð�k � 1BÞ ¼ �: (5)

In other words, the zero-discord state is of the form � ¼P
kpkjc kihc kj � �k, where fjc kig is some orthonormal

basis set, �k are the quantum states in B, and pk are non-
negative numbers such that

P
kpk ¼ 1.

Easily implementable necessary and sufficient condi-
tion.—Let us choose basis sets in local Hilbert-Schmidt
spaces of Hermitian operators, fAng and fBmg where n ¼
1; . . . ; d2A and m ¼ 1; . . . ; d2B. We decompose the state �
of the composite system into � ¼ P

nmrnmAn � Bm. The
coefficients rnm define d2A � d2B real matrix R, which
we call the correlation matrix. We can find its singular
value decomposition (SVD), URWT ¼ diag½c1; c2; . . .�
where U and W are d2A � d2A and d2B � d2B orthogonal

matrices, respectively, while diag½c1; c2; . . .� is d2A � d2B
diagonal matrix. SVD defines the new basis in local spaces
Sn ¼ P

n0Unn0An0 and Fm ¼ P
m0Wmm0Bm0 . The state � in

the new basis is of the form � ¼ P
L
n¼1 cnSn � Fn, where

L ¼ rankR is the rank of correlation matrix R (the number
of nonzero eigenvalues cn).
The necessary and sufficient condition (5) becomesP
L
n¼1 cnð

P
k�kSn�kÞ � Fn ¼ P

L
n¼1 cnSn � Fn and it is

equivalent to the set of conditions:X
k

�kSn�k ¼ Sn; n ¼ 1; . . . ; L; (6)

or equivalently ½Sn;�k� ¼ 0 for all k; n. This means that
the set of operators fSng has a common eigenbasis defined
by the set of projectors f�kg. Therefore, the set f�kg exists
if and only if

½Sn; Sm� ¼ 0; n; m ¼ 1; . . . ; L: (7)

In order to show zero discord we have to check at
most LðL� 1Þ=2 commutators, where L ¼ rankR �
minfd2A; d2Bg. Now, recall that the state of zero discord is

of the form � ¼ PdA
k¼1 pk�k � �k; therefore, it is a sum of

at most dA product operators. This bounds the rank of the
correlation tensor to L � dA. Thus, the rank of the corre-
lation tensor is the simple discord witness: If L > dA, the
state has a nonzero discord.
A correlation matrix can be obtained directly by simple

measurements usually involved in quantum state tomog-
raphy. However, the detection of nonzero discord does not
necessarily require measurement of all ðdAdBÞ2 elements of
the correlation matrix (full state tomography). It is suffi-
cient that the experimentalist measures that many elements
of the correlation matrix until he finds dA þ 1 linearly
independent rows (or columns) of the correlation matrix.
Geometric measure of discord.—Evaluation of quantum

discord given by Eq. (3) in general requires considerable
numerical minimization. Different measures of quantum
discord [21] and their extensions to multipartite systems
[19] have been proposed. However, analytical expression
are known only for certain classes of states [16]. Here we
propose the following geometric measure,

Dð2Þ
A ð�Þ ¼ min

�2�0

k�� �k2; (8)

where �0 denotes the set of zero-discord states and
kX � Yk2 ¼ TrðX � YÞ2 is the square norm in the
Hilbert-Schmidt space. We will show how to evaluate
this quantity for an arbitrary two-qubit state.
Two-qubit case.—Consider the case H A ¼ H B ¼ C2.

We write a state � in Bloch representation:

�¼1

4

�
1�1þX3

i¼1

xi�i�1þX3
i¼1

yi1��iþ
X3
i;j¼1

Tij�i��j

�
;

(9)

where xi ¼ Tr�ð�i � 1Þ, yi ¼ Tr�ð1 � �iÞ are compo-
nents of the local Bloch vectors, Tij ¼ Tr�ð�i � �jÞ are
components of the correlation tensor, and �i, i 2 f1; 2; 3g,

PRL 105, 190502 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

5 NOVEMBER 2010

190502-2



are the three Pauli matrices. To each state � we associate
the triple f ~x; ~y; Tg. Now, we characterize the set�0. A zero-
discord state is of the form � ¼ p1jc 1ihc 1j � �1 þ
p2jc 2ihc 2j � �2, where fjc 1i; jc 2ig is a single-qubit
orthonormal basis, �1;2 are 2� 2 density matrices, and

p1;2 are non-negative numbers such that p1 þ p2 ¼ 1.
We define t ¼ p1 � p2 and three vectors

~e ¼ hc 1j ~�jc 1i; (10)

~s� ¼ Trðp1�1 � p2�2Þ ~�: (11)

It can easily be shown that t ~e and ~sþ represent the local
Bloch vectors of the first and second qubit, respectively,
while the vector ~s� is directly related to the correlation
tensor which is of the product form T ¼ ~e~sT�. Therefore,
a state of zero discord � has Bloch representation ~� ¼
ft ~e; ~sþ; ~e~sT�g, where k ~ek ¼ 1, k~s�k � 1, and t 2 ½�1; 1�.
The distance between states � and � is given by

k�� �k2 ¼ k�k2 � 2Tr��þ k�k2
¼ 1

4ð1þ k ~xk2 þ k ~yk2 þ kTk2Þ
� 1

2ð1þ t ~x ~eþ ~y~sþ þ ~eT ~s�Þ
þ 1

4ð1þ t2 þ k~sþk2 þ k ~s�k2Þ; (12)

where kTk2 ¼ TrTTT. First, we optimize the distance over
parameters ~s� and t. The function of Eq. (12) is convex and
quadratic in its variables t; ~s�. It is straightforward to see
that its Hessian is a positive and nonsingular matrix.
Therefore, the function has a unique global minimum.
The minimum occurs when the derivative is zero:

k�� �k2
@t

¼ 1

2
ð� ~x ~eþtÞ ¼ 0; (13)

k�� �k2
@~sþ

¼ 1

2
ð� ~yþ ~sþÞ ¼ 0; (14)

k�� �k2
@~s�

¼ 1

2
ð�TT ~eþ ~s�Þ ¼ 0; (15)

which gives the solution t ¼ ~x ~e , ~s� ¼ ~y, and ~sþ ¼ TT ~e.
Since the solution lies within the range of parameters,
j ~x ~e j; k ~yk; kTT ~ek � 1 it represents the global minimum.
After substituting the solution we obtain k�� �k2 ¼
1
4 ½k ~xk2 þ kTk2 � ~eð ~x ~xT þ TTTÞ ~e�, which attains the mini-

mum when ~e is an eigenvector of matrix K ¼ ~x ~xT þ TTT

for the largest eigenvalue. Therefore, we have

Dð2Þ
A ð�Þ ¼ 1

4ðk ~xk2 þ kTk2 � kmaxÞ; (16)

where kmax is the largest eigenvalue of matrix K ¼ ~x ~xT þ
TTT . Next, we apply our criterion to a class of states.

States with maximally mixed marginals.—We consider
an example of two qubit states with maximally mixed
marginals. Such a state is locally equivalent (under
some local unitary transformation U1 �U2) to a state
�ð~tÞ ¼ ð1 � 1þP

3
i¼1 ti�i � �iÞ=4, where ~t ¼ ðt1; t2; t3Þ.

The state �ð~tÞ is physical if ~t belongs to the tetrahedron
(Fig. 1) defined by the set of vertices ð�1;�1;�1Þ,

ð�1; 1; 1Þ; ð1;�1; 1Þ, and ð1; 1;�1Þ, while is separable if
~t belongs to the octahedron defined by the set of vertices
ð�1; 0; 0Þ, ð0;�1; 0Þ, and ð0; 0;�1Þ [22]. Simple calcula-

tion shows that Dð2Þ
A ð~tÞ ¼ 1

4 ðt21 þ t22 þ t23 �maxft21; t22; t23gÞ.
The zero-discord states have at most one nonzero compo-
nent of vector ~t [Fig. 1, solid gray (red) lines]. The function

Dð2Þ
A ð~tÞ reaches its maximal value of Dð2Þ

A ¼ 1=2 at the

vertices of tetrahedron which represent the four Bell states.
Within the set of separable states (octahedron) its maximal

value ofDð2Þ
A ¼ 1=6 is attained at the centers of octahedron

facets ð�1;�1;�1Þ=3. They represent the states

�i1i2i3 ¼
1

4

�
1 � 1þ 1

3

X3
k¼1

ð�1Þik�k � �k

�
; (17)

where ik ¼ �1 and can intuitively be understood as equal
mixture of ‘‘maximally nonorthogonal’’ states. The states
are symmetric under exchange of subsystems; thus, they
have the same value of left and right discord DA ¼ DB.
DQC1 model.—In [3], Knill and Laflamme introduced

the model of mixed-state quantum computing which pre-
forms the task of evaluating the normalized trace of a
unitary matrix efficiently. The corresponding quantum cir-
cuit is shown in Fig. 2. The input state is a highly mixed
separable state and consists of a control qubit in the state
1
2 ð1þ ��3Þ, where � describes the purity, and a collection

of n qubits in the maximally mixed state 1
2n 1n, where 1n is

the n-qubit identity. The DQC1 circuit consists of the
Hadamard gate applied to the control qubit and a control
n-qubit unitary gate Un. The output state is

1

1

1

FIG. 1 (color online). The set of two-qubit states with maxi-
mally mixed marginals (i.e., the reduced states of individual
qubits are completely mixed). Physical states belong to the
tetrahedron, among which separable ones are confined to the
octahedron. The zero-discord states are labeled by the solid gray
(red) lines (almost all states have nonzero discord [12]). The
states with maximal value of discord correspond to the vertices
of the tetrahedron (the four Bell states). Among the set of
separable states, those which maximize discord are the centers
of octahedron facets ð�1;�1;�1Þ=3 (black dots).
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�¼ 1

2nþ1
ð11 � 1n þ�j1ih0j �Un þ�j0ih1j �Uy

n Þ: (18)

We consider only the cases � � 0; otherwise, the state at
the output is completely mixed and therefore cannot ac-
complish the task. After measuring the control qubit at the
output in the eigenbasis of �1 and �2, we retrieve the
normalized trace of the unitary matrix � ¼ TrUn=2

n with
the polynomial overhead scaling 1=�2 [10].

The control qubit is completely separable from the rest
of the qubits. The output state has vanishingly small en-
tanglement across any bipartite split that groups the control
qubit with some of the mixed qubits [3]. However, there is
strong evidence that a DQC1 task cannot be preformed
efficiently using classical computation [9]. The question is,
what brings a ‘‘speedup’’ in the considered task? The
quantum discord was proposed as a figure of merit for
characterizing the resources present in the DQC1 model
[10]. It has been shown that for almost every unitary matrix
Un (random unitary) the discord in the output state (18) is
nonvanishing. Here we derive an explicit condition for
characterizing the correlations in the output state and
show that the discord is unlikely to be the source of
speedup. We rewrite it into the following form:

�¼ 1

2nþ1

�
11�1nþ��1�UnþUy

n

2
þ��2�Un�Uy

n

2i

�
:

(19)

Now, we apply the condition (7). The operators �1 and �2

do not commute; therefore, the state � is of the zero discord

if and only if the operators UnþUy
n

2 and Un�Uy
n

2i are linearly

dependent, or equivalently, Uy
n ¼ kUn. This is possible if

and only if Un ¼ ei�A, where A2 ¼ A is a binary observ-
able. For such a unitary all the correlations at the output of
the DQC1 circuit are classical. However, it is very unlikely
that the normalized trace of ei�A can be evaluated effi-
ciently on a classical computer, since all of its eigenvectors
can be arbitrarily complex (random states).

We emphasize that our measure of discord is not mono-
tonic under local operations. This, however, is not a short-
coming, as discord, unlike entanglement and mutual
information, can in fact increase as well as decrease under
local operations (even without the presence of classical

correlations). A simple example of the local increase is to
start from a zero-discord state j00ih00j þ j11ih11j and
transform, say, the first qubit, so that j0i ! jc 0i and j1i !
jc 1i, such that jc 0i and jc 1i are not orthogonal. The
resulting state, j0�0ih0�0j þ j1c 1ih1c 1j, clearly has a
nonvanishing discord. Finally, we point out that our
method can be extended to any number of subsystems,
though evaluating the measure of discord becomes pro-
gressively more difficult with increasing number of sub-
systems and their dimensionality.
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