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The unavoidable presence of noise is thought to be one of the major problems to solve in order to pave

the way for implementing quantum information technologies in realistic physical platforms. However,

here we show a clear example in which noise, in terms of dephasing, may enhance the capability of

transmitting not only classical but also quantum information, encoded in quantum systems, through

communication networks. In particular, we find analytically and numerically the quantum and classical

capacities for a large family of quantum channels and show that these information transmission rates can

be strongly enhanced by introducing dephasing noise in the complex network dynamics.
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Introduction—An important obstacle for the develop-
ment of quantum communication technologies is the diffi-
culty of transmitting quantum information over noisy
quantum communication channels, recovering and refresh-
ing it at the receiver side, and then storing it in a reliable
quantum memory [1]. This concerns both point-to-point
communication as well as more complex quantum net-
works consisting of several nodes. These operations are
necessary as the unavoidable presence of noise during
transmission via a quantum channel and its processing at
the receiver’s end is generally expected to degrade the
transmission quality. It was pointed out, however, that
noise may in fact have a positive influence on sustaining
quantum correlations [2]. This motivated some early ex-
plorations of the potentially beneficial effects that noise
may have on information transmission through quantum
channels [3]. It was not possible, however, to compute
capacities in those examples, and attention focused on
related quantities that were furthermore restricted to cer-
tain input states. As a result, no firm conclusion could be
drawn from these considerations. Recently though, it was
realized in a different context that noise may have a posi-
tive impact on transport phenomena in complex networks.
In fact, it was found that excitation energy transfer (EET)
in light harvesting complexes during photosynthesis can
benefit considerably from the presence of dephasing noise
[4]. Here, it is the intricate interplay of noise and quantum
coherence that explains the remarkable efficiency, well
above 90%, for EET in light harvesting complexes during
photosynthesis, whereas noise-free systems exhibit effi-
ciencies of around 50% only [5]. Motivated by these
results, we study the scenario of a realistic communication
network, subjected to a noisy evolution, derive analytically
and numerically the channel capacities, and we show that
they can remarkably increase by using dephasing.

The Model—We consider a generic complex network of
N vertices, in which each site represents a two-level quan-
tum system (qubit). Suppose that the sender of the
message, Alice (A), wants to transmit a message to the

receiver, Bob (B), by using such quantum network [see
Fig. 1]. The communication protocol can be the following:
(i) Alice applies a swap operation in order to set the un-
known initial qubit state�A in the site 1, while the rest of the
network is initially prepared in the ground state j0 . . . 0i;
(ii) then they let the network state evolve under some
quantum noisy evolution; and (iii) at time tout, Bob tries to
recover the information sent by Alice through some decod-
ing procedures applied to his output state �BðtoutÞ, which
corresponds to the reduced density operator for the Nth
qubit (up to a local unitary transformation). Mathemati-
cally, at each time tout, one can describe this process as a
completely positive and trace-preserving (CPTP) quantum
channel of the form

�BðtoutÞ � Eð�AÞ ¼ TrðNÞ½UðtoutÞð�A � �EÞUðtoutÞy� (1)

where TrðNÞ indicates the trace over all the network qubits
but N, �E is the initial state of some effective environment,
and UðtoutÞ is the unitary evolution of systemþ
environment for a time tout. For instance, in the case
of a Hamiltonian evolution of the network, �E is the
ground state of all the qubits 2; . . . ; N and UðtoutÞ ¼
exp½�iHtout=@� is the unitary evolution operator associated
to the HamiltonianH. In this case, following Ref. [6], if the

FIG. 1 (color online). Communication network: on one side,
Alice sends a message encoded in the qubit 1 while the rest of
the network is prepared in its ground state. On the other side,
after the network noisy evolution, Bob tries to recover Alice’s
message decoding the output in site N.
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Hamiltonian commutes with the Pauli operator �z, i.e., the
number of qubits in the state j1i is constant in time, at each
time tout the corresponding quantum map is an amplitude
damping channelDð�Þ, with the damping coefficient given
by � ¼ hNjUðtoutÞj1i, with the convention that jji denotes
the state in which all the qubits are in the state j#i, except
the qubit j in the state j"i. In particular, the authors of
Ref. [6] considered a spin chain subjected to a Heisenberg
Hamiltonian evolution and in this context derived the chan-
nel capacities. Here, we investigate a noisy evolution
of a network of N qubits, in which, for instance, some
pure dephasing noise is present in the dynamics and, as
shown later, will play a key role in the information transfer
rates of the corresponding communication channel. For
simplicity, we will consider the following Hamiltonian,
H ¼ P

N
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a local Lindblad superoperator that takes into account the
dephasing caused by some surrounding environment, i.e.,
Ldephð�Þ ¼ P
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j ) being the raising and lowering operators for

site j, @!j being the local site excitation energy, vk;l denot-

ing the hopping rate of an excitation between the sites k and
l, and �j being the dephasing rate at the site j. Generalizing

Ref. [6], we find that, at each time tout, the corresponding
CPTP quantum channel has the form:
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with p a real number in the range ½0; 1� and � a complex
number such that j�j2 � pð1� pÞ. The channel is com-
pletely defined by two time-dependent parameters:
(i) � 2 ½0; 1� describing the population damping, and
(ii) s 2 ½0; 1� including the dephasing effects. On one
hand, because of the linearity of a quantum channel, �ðtoutÞ
corresponds to the population of siteN at time toutwhen�A �
�E ¼ j1ih1j, i.e., one excitation is initially in the site 1. On
the other hand, s is generally a complicated time-dependent
function of all the parameters involved in the noisy evolution
and later will be determined numerically considering a ge-
neric input qubit state. Note also that s can be considered as a
real number because any phase ei� can be eliminated apply-
ing a local unitary transformation, i.e., j1i ! e�i�j1i, and the
quantities analyzed later are invariant under such operations.
Besides, it can be easily shown that the map in (2) is equiva-
lent to a consecutive application of an amplitude damping
channel Dð�Þ and a phase-flip channel N ðsÞ (unitarily
equivalent to a dephasing channel), changing the phase of
the state j1i, i.e., j1i ! �j1i, with probability ð1� ffiffiffi

s
p Þ=2.

In other words, one has Eð�; sÞ ¼ Dð�Þ �N ðsÞ ¼
N ðsÞ �Dð�Þ. In general, a CPTP quantum channel can
be also represented in an elegant form known as operator-

sum (or Kraus) representation [1], i.e., Eð�AÞ ¼
P

kAk�AA
y
k ,

where the so-called Kraus operators Ak satisfy the conditionP
kA

y
k Ak ¼ 1. In particular, these operators for themap in (2)

are given byA1 ¼ diagð0; ffiffiffiffiffiffi
s�

p Þ,A2 ¼ antidiagð0; ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p Þ,
and A3 ¼ diagð0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� sÞ�p Þ. In the following, we will

analyze the capability of the channel in (2) for transmitting
classical and quantum information asymptotically undis-
turbed, i.e., with a vanishing error probability in the limit
of long messages and with some optimal encoding and
decoding schemes, by calculating, respectively, the classical
and quantum channel capacities.
Classical Capacity—The so-called ‘‘one-shot’’ or prod-

uct state classical capacity of a quantum channel is
obtained maximizing the Holevo information [7], i.e.,

C1ðEÞ ¼ max
�k;�k

�

S

�X

k

�kEð�kÞ
�

�X

k

�kS½Eð�kÞ�
�

(3)

where the maximum is taken over all probability distribu-
tions �k and collections of density operators �k, and
Sð�Þ ¼ �Tr½�log2�� is the von Neumann entropy of the
state �. This is the classical capacity with unentangled
encodings (one-shot) while a full maximization over
multiple channel uses would provide the unrestricted clas-
sical capacity of a quantum channel CðEÞ. For simplicity,
we will focus here on the case of unentangled encodings
which yields lower bounds for the unrestricted classical
capacity of a quantum channel. Notice, however, that
the classical capacity with entangled encodings is also
a monotonic increasing function of �, by bottleneck
inequality, i.e., C½Eð�; sÞ� � C½Eð�0; sÞ � Eð�=�0; 1Þ� �
minfC½Eð�=�0; 1Þ�; C½Eð�0; sÞ�g � C½Eð�0; sÞ� with � �
�0. Hence, in the presence of a dephasing-induced en-
hancement of the population transfer �, also the full clas-
sical capacity C is enhanced. Now, we calculate C1 for the
family of quantum channels in (2). In the case s ¼ 1,
the channel reduces to Dð�Þ, whose channel capacities
were studied in Ref. [6]. Here, first we will solve analyti-
cally the case of s ¼ 0, which will be relevant in the
example below. Let us consider an ensemble f�k; �kg,
with �k of the form of �A in Eq. (2), with parameters pk

and �k. The ensemble average state will be a state �
with coefficients p and � such that p ¼ P

k�kpk and
� ¼ P

k�k�k. In the case of s ¼ 0, it can be easily shown
that the Holevo information reduces to H2ð�pÞ �P

k�kH2ð�pkÞ, with H2 being the binary entropy function
defined as H2ðxÞ ¼ �xlog2x� ð1� xÞlog2ð1� xÞ. By ex-
ploiting the concavity property of H2, one finds that
C1½Eð�; 0Þ� � maxp2½0;1�½H2ð�pÞ � pH2ð�Þ�. The last

step of this analytical calculation consists of showing that
this upper bound is actually tight and can be obtained with
the following optimal ensemble defined by the coefficients
�1 ¼ p and generic �i such that

P
k�k ¼ 1, with p1 ¼ 1

and pi ¼ 0, for i ¼ 2; . . . d, where d is the generic dimen-
sion of the ensemble f�k; �kg. Therefore, we find that

C1½Eð�; 0Þ� ¼ H2ð� �pÞ � �pH2ð�Þ; (4)

where �p ¼ ½ð1� �Þð��1Þ=� þ ���1 is the optimal value of
p—see Fig. 2. Notice that, because of the composition law
above, one has also that Eð�; s1Þ ¼ Eð�; s2Þ �N ðs1=s2Þ
for s1 < s2. Hence, by the bottleneck inequality,
the following relations hold, i.e. C1½Eð�;0Þ��
C1½Eð�;s1Þ�� ...�C1½Eð�;snÞ��C1½Eð�;1Þ��C1½Dð�Þ�
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for 0 � s1 � . . . � sn � 1. In other words, the �
dependence of C1½Eð�; sÞ� will be described by a continu-
ous family of lines for the intermediate value of s in the
range ½0; 1�, i.e., between the red (s ¼ 1) and black (s ¼ 0)
extreme lines in Fig. 2. From these results it turns out that
the presence of dephasing, on one hand, may increase the
value of � enhancing also C1, but, on the other hand, may
reduce the value of C1 by decreasing s. Hence, a compro-
mise of these two dephasing-induced effects could lead to a
global enhancement of the classical capacity, as shown
below. Since the classical capacity does implicitly
depend on the reading time tout, we define also a new
quantity, �C1ðEÞ, as the best channel capacity obtained
maximizing the capacity over tout, i.e., �C1ðEÞ ¼
maxtoutC1fE½�ðtoutÞ; sðtoutÞ�g.

As a concrete example, we will consider the transport
dynamics of electronic excitations in a biological pigment-
protein complex, called the FMO (Fenna-Matthews-Olson)
complex, involved in the early steps of photosynthesis in
sulfur bacteria [8]. It is possible to describe this complex as
a network of seven sites, represented as qubits, and the
excitation transport by theHamiltonian andLindblad super-
operators as above—see Ref. [5] for details. At each time
tout (scale of picoseconds), the transfer of energy from site 1
to the so-called reaction center (RC) can be mapped as in
Eq. (2), where � is equal to the amount of excitation
psinkðtoutÞ in the RC when one excitation is initially in site
1, while s ¼ 0 since there is just an irreversible population
transfer from the site 3 to the RC, i.e., the map is
E½psinkðtoutÞ; 0�. By choosing the parameters as in Ref. [5],
we find that the classical capacity of the FMO complex,
described as a quantum channel, C1fE½psinkðtoutÞ; 0�g, is
remarkably enhanced in the presence of dephasing, espe-
cially after 1 ps–see Fig. 3. The dephasing-enhanced clas-
sical capacity is due to the acceleration of transport in the
network and may have been expected from the results of
[4,5] as dephasing does not affect classical information.
Dephasing, however, destroys quantum information and
so it is unexpected that the quantum capacity may be
enhanced by dephasing as well.

Quantum capacity—The quantum capacity Q refers,
instead, to the coherent transmission of quantum informa-
tion (measured in number of qubits) through a quantum
channel. It is more difficult to treat than the classical
capacity discussed above and its explicit calculation is
one of the basic issues in quantum information science.
The one-shot formula for the quantum capacity is obtained
maximizing the coherent information [9], i.e.,

Q1ðEÞ ¼ max
�2H

fS½Eð�Þ� � Sð�; EÞg (5)

where the maximization is performed over all qubit states
in the input Hilbert spaceH . Here, Sð�; EÞ is the exchange
entropy of the channel [1], describing the amount of infor-
mation exchanged between the system and the environment
after the noisy evolution, and is given by Sð�; EÞ � SðWÞ ¼
�Tr½Wlog2W� with Wij ¼ Tr½Ai�A

y
j �. Note that Q1 is

usually a lower bound for Q (which is maximized over
many channel uses), since the coherent information is
generally not additive. It turns out numerically that the
expression to maximize in (5), with� as�A in (2), is always
decreasing in j�j2 for � � 1=2 and then it achieves the
maximum value for � ¼ 0; the remaining optimization inp
has been performed numerically and the results are shown
in Fig. 2. In the case of s ¼ 1, the channel reduces toDð�Þ,
for which the coherent information can be proved to be
additive (i.e., since it is a degradable channel [10]), and the
optimization over the channel uses is not necessary; this
regime has been investigated in Ref. [6]. Here, we general-
ize those results in the presence of dephasing, i.e., s < 1,
and find numerically the one-shot quantum capacity Q1 as
in Fig. 2. The additivity of the coherent information cannot
be proved for s < 1 but our results for Q1 are, of course, a
lower bound for the capacity Q with entangled encodings.
Although we have not computed the full quantum capacity
rigorously and analytically, our lower bounds are sufficient
to show the noise-assisted enhancement for the unrestricted
quantum capacity as well. Similar enhancement is observed
in other figures of merit, i.e., channel fidelity FðRÞ and
entropy SðRÞ [11,12], which can be analytically derived for
the map in (2), i.e., FðRÞ ¼ 1=4ð1þ �þ 2

ffiffiffiffiffiffi
�s

p Þ and

FIG. 2 (color online). Classical and quantum capacities,
C1½Eð�; sÞ� and Q1½Eð�; sÞ�, vs � and s. Inset: contour plot for
Q1½Eð�; sÞ� vs s and � in a color gradient scheme where light
grey corresponds to 1 and black to vanishing values of Q1. Note
that Q is always zero for � � 1=2 and any s.
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FIG. 3 (color online). Classical capacity of the FMO-complex
quantum channel, C1fE½psinkðtoutÞ; 0�g, vs time tout. There is a clear
remarkable enhancement of C1 in the case of pure dephasing noise.
By maximizing C1 over tout, one has �C1ðEÞ 	 0:72 in absence of
dephasing, while �C1ðEÞ 	 0:99 in the case of dephasing.
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SðRÞ ¼ �P3
i¼1 �ilog2�i, with �1 ¼ ð1� �Þ=2, �2;3 ¼

1=4½1þ �
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�sþ ð1� �Þ2p �. Because of the com-

position law Eð�; sÞ ¼ Dð�Þ �N ðsÞ, the channel in (2)
has always a vanishing Q for � � 1=2 and for any s, since
in this regime Dð�Þ has Q ¼ 0 (being an antide-
gradable channel) [6,13]. Finally, as in the classical
capacity case, we introduce the quantity �Q1ðEÞ ¼
maxtoutQ1fE½�ðtoutÞ; sðtoutÞ�g. A specific example of a three-

qubit network is shown in Fig. 4. The presence of dephasing
‘‘switches on’’ the channel capability of transmitting quan-
tum information and the optimal rates can be very close to 1
(i.e., almost perfect state transfer), while Q is exactly zero
without dephasing. The intuitive reason for this behavior is
the fact that, in the noise-free case, quantum information
progresses along two possible paths, thus being split and
not arriving at the same time. This approximates a channel
that splits the quantum information which in turn has
vanishing quantum capacity. For strong dephasing, the
path via E is blocked and direct transfer from A to B leads
to the arrival of all quantum information at B. Noise-
assisted channel capacities may also be observed for larger
networks and when all sites suffer dephasing, but the effect
is most pronounced for nonuniform distribution of the
noise. As final remark, notice that, in a quantum crypto-
graphic scenario, the dephasing can be induced by the
presence of an eavesdropper (Eve) in the third site, and,
interestingly enough, it turns out that the eavesdropping
operation is completely useless for Eve (i.e., Q for the
channel A ! E remains exactly zero), but it does sensibly
improve the Alice-Bob communication.

Conclusions and Outlook—We have evaluated analyti-
cally and numerically the classical and quantum channel
capacities of a realistic communication network and
showed that these optimal information transmission rates
can be enhanced by applying some pure dephasing to the

network. In particular, this allows us to reinterpret the
observed dephasing-assisted EET in photosynthetic com-
plexes as an example of a quantum channel with a noise-
enhanced classical capacity. Perhaps more surprisingly, we
have shown that the presence of noise may lead to a finite
quantum capacity where the noiseless system has vanish-
ing capacity. As a result, not only the transmission rate of
classical information can be assisted by noise but also the
transmission of quantum information coded in quantum
states. We expect these results to be easily generalizable to
bosonic systems and to be valid for any Hamiltonian
preserving the number of excitations, other forms of noise,
and also for non-Markovian evolutions. Finally, the
three-site quantum network illustrating the fundamentals
of our results could be experimentally investigated
relatively easily by considering, e.g., quantum information
platforms using trapped ions or cold atoms where dephas-
ing can be introduced in a controlled manner.
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