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We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of

relativistic lattice fermions in 3þ 1 dimensions. By exploiting laser-assisted tunneling, we find an

analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling

problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be

inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter

where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.
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The formulation of relativistic fermions in lattice gauge
theories (LGTs) [1] is hampered by the fundamental prob-
lem of species doubling [2], namely, the rise of spurious
fermions that modify the physics at long wavelengths. To
prevent the abundance of such fermion doublers, a suitable
tailoring of their masses is required, leading to the
so-called Wilson fermions [3]. A different, but also funda-
mental, hindrance in high-energy physics is the strong CP
problem, more precisely, the lack of experiments confirm-
ing the charge-parity violation in strong interactions [4]. To
reconcile theory and experiment, the Peccei-Quinn mecha-
nism postulates a new particle, the axion [5], whose detec-
tion still remains elusive. Interestingly enough, these two
seemingly unrelated problems turn out to be closely con-
nected. Indeed, Wilson fermions with an inverted mass
give rise to a certain axion background [6,7]. In this
Letter, we suggest to exploit this connection to explore
axion electrodynamics [8] in a tabletop experiment of
ultracold atoms. The exquisite and genuine control over
quantum systems inherent to ultracold-atom technologies
[9] allows us to propose the implementation Wilson fer-
mions in optical superlattices [Fig. 1(a)]. This experiment
would trace a promising route to design, control, and probe
the rich physics of axions. As a first step, inverting the
Wilson mass via laser-assisted tunneling enables us to
realize a background axion field � ¼ �, which corresponds
to a new class of unconventional states of matter: 3D topo-
logical insulators (TIs) [6,7,10,11]. These gapped phases
have conducting edges protected by topological order, but
respect time-reversal symmetry. We show that our proposal
constitutes the first fully-controllable quantum simulator
(QS) [12] of 3D TIs preserving a general antiunitary
symmetry. Besides, the space and time dependence of
the axion field can be experimentally tailored to test the
magnetoelectric [6], Witten [7], or Wormhole effects [13].

We focus instead on a fractional magnetic capacitor, whose
implementation and detection are better suited for optical-
lattice techniques.
We consider a 40K Fermi gas in an optical superlattice

[9], with Zeeman sublevels (i.e., spins) of the F ¼ 9
2 hy-

perfine manifold. We show that laser-assisted tunneling
leads to the effective Hamiltonian (@ ¼ 1)

Heff ¼
X
r�

X
��0

t�c
y
rþ��0 ½Ur���0�cr� þ H:c:; (1)

where cyr� creates a fermion with spin � at r¼mx̂þnŷþ lẑ
withm, n, l 2 f1:::Lg, and t� � 0:1–1 kHz is the tunneling
strength. Here,Ur� are hopping operators from r ! rþ �,
� 2 fx̂; ŷ; ẑg, and we use Gaussian units. These operators
usually rely on spin-dependent optical lattices [14]. We
use instead spin-independent bichromatic superlattices
[Fig. 1(a)], which trap all levels from the F ¼ f72 ; 92g mani-

folds, and allow for lifetimes �l � 1 s. The optical potential
is VðrÞ ¼ V0

P
�½cos2ð�r�Þ þ cos2ð2�r�Þ�, where V0 �

50–150 kHz and we have set the lattice spacing to 1. This
yields a cubic superlatticewith atoms trapped in theminima
at zero energy (i.e., sites), and secondary minima at�Esl �
50–100 kHz (i.e. links). The hopping betweenF ¼ 9

2 atoms

in neighboring sites is mediated by a Raman transition to a
F ¼ 7

2 ‘‘bus’’ level in the intermediate link [Fig. 1(a)].

Let us consider two states j�; �i, j�0; � 0i, where �, �0
label the Zeeman sublevels whereas � , � 0 label the band
index and center-of-mass lattice coordinates. A two-
photon process (!i and pi are the frequency and momen-
tum of the ith photon), after eliminating an excited level,
couples these states

HL ¼ X
�;�0

X
�;� 0

~��0� 0
�� cy

� 0�0c�� þ H:c:;

~��0� 0
�� ¼ S� 0���0�e

�i!t
(2)
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where cy�� creates a fermion in j�; �i, S� 0� is the over-

lap between Wannier wave functions S� 0� ¼
h� 0je�iðp2�p1Þ�xj�i, and ! ¼ !1 �!2. The remaining part
of the coupling depends on the light polarization and the
atomic internal structure. Thus, the formula factors out
the contribution of the center-of-mass wave function and
of the internal degrees of freedom. If the transferred mo-
mentum is large, we increase the overlap factor S� 0� be-

tween neighboring sites and links, and thus the hopping.
Besides, if lasers are far-detuned from this transition,
we can adiabatically eliminate the bus level, realizing
a four-photon coupling that leads to the single-band
Hamiltonian in Eq. (1). Here, the hopping strengths
scale as t� � j�j2=d, where d� 0:2–2 MHz, and ��
10–100 kHz is the Rabi frequency [Fig. 1(a)]. Because of
the large Zeeman shift �Ez=B� 0:3 MHz=G, we can
independently implement each matrix element of Ur�

eliminating a different bus level. A careful analysis shows
that the contributions of other bands and spurious on-site
couplings can be neglected [15]. In Figs. 1(c) and 1(d), we
confirm this for two schemes with the necessary ingre-
dients: spin-preserving and spin-flipping hoppings. We use
four spin components, and design the hopping in terms
of Pauli matrices [Fig. 1(b)], Ur� ¼ e�i���� , where �� ¼
�z � �� and �� 2 R. Such a block structure allows the
implementation of Ur� in parallel for each spin pair, thus
reducing the experimental intricacies. The diagonal tun-
neling can be directly implemented [see Fig. 1(c)]. The
spin-flipping hopping requires the even and odd sites to be

staggered with �Est � 10–20 kHz, but is also efficient
[Fig. 1(d)]. This scheme, originally developed for spin-1
bosons with three-body interactions [15], leads to the
interaction picture Hamiltonian in Eq. (1) when the scat-
tering is switched off by Feschbach resonances [16].
Remarkably enough, starting from this ultracold gas of

nonrelativistic atoms, there are certain regimes where the
emergent quasiparticles become ultrarelativistic fermions.

The bulk energy bands come in degenerate pairs Ek�¼P
�2t�cosk�cos���2ðP�t

2
�sin

2k�sin
2��Þ1=2, and k 2

½��;��3 lies in the Brillouin zone. In the �-flux regime
�� ¼ �=2, atoms wandering around plaquettes take on
an overall minus sign, and the bands touch at different
points �d2fðdx�;dy�;dz�Þ:dx;dy;dz¼0;1g. Around

them, low-energy excitations display a relativistic disper-

sion EðpÞ � �ðc2xp2
x þ c2yp

2
y þ c2zp

2
zÞ1=2, where c� ¼ 2t�

is the effective speed of light, and p ¼ k��d. Indeed,
imposing an ultraviolet cutoff jp�j � 1=2	c, the effective
field theory is

Hd
eff ¼

Z
	c

d3r�yðrÞHd
D�ðrÞ; Hd

D ¼X
�

c��
d
�p�; (3)

where�ðrÞ ¼ ½c1ðrÞ; c2ðrÞ; c3ðrÞ; c4ðrÞ�t is the field opera-
tor, �d

� ¼ ð�1Þd���, and p� ¼ �i@=@r� is the momen-
tum. The chosen hoppings induce a Clifford algebra
f�d

�; �
d

g ¼ 2��
, and Eq. (3) yields a physical realization

of naive Dirac fermions in LGT [2]. In our scheme, fer-
mion doubling leads to an even number of species which,
in contrast to the artificial doublers in LGT, correspond to
physical flavors. Each of them has a different chirality
�d
5 ¼ Qd

5�5, where �5 ¼ �z � I, and Qd
5 ¼ ð�1Þdxþdyþdz

is the axial charge. Chiral symmetry, which is fundamental
in the standard model classifying right and left-handed
particles �5� ¼ ��, cannot be incorporated to the lattice
globally.
Let us stress that we are not limited to the massless

limit, but can also include a mass term Hm ¼R
d3r�ðrÞymc2
�ðrÞ, and 
 ¼ �x � I. Since no momen-

tum transfer is required, this term can be engineered via on-
site microwave Raman transitions of strength mc2.
In LGT, Wilson envisaged a method to decouple the

doublers from a single Dirac fermion [3]. Our approach
allows us to realize his idea by combining the previous
ingredients with additional ~Ur� ¼ �ie�i’�
. For ’� ¼
�=2, Eq. (3) turns into

Hd
eff ¼

X
�

c��
d
�p� þmdc

2
;

md ¼ m�X
�

ð�1Þd�m�;
(4)

where m�c
2 ¼ 2~t� depends on the assisted-hopping

strength, and thus on the laser power ~t� � j�j2=d. Since
j�j2 is proportional to the laser intensities, the tunneling
strength, and thus the masses, are controlled by the beam’s
power. We stress that since t�, ~t� � 0:1–1 kHz, the tem-
perature requirements of this proposal are similar to those

FIG. 1 (color online). (a) Superlattice potential (grey lines).
The hopping between F ¼ 9=2 levels is laser-assisted via an
intermediate F ¼ 7=2 state. The coupling, detuned by dþ �, is
induced by an off-resonant Raman transition with Rabi fre-
quency �. (b) Scheme of the four states of the F ¼ 9=2
manifold [(red) vertices], connected by laser-induced hoppings
[(green) boxes]. (c) Time-evolution of the populations of the
neighboring hyperfine levels. The solid (dashed) line is used for
site i (iþ 1); the red (black) line is used for mF ¼ 9=2 (mF ¼
7=2). A clear spin-preserving Rabi oscillation between neighbor-
ing sites is shown. (d) The same as before for a spin-flipping
hopping. Notice the need for a superlattice staggering
(10–20 kHz) in order to avoid on- site spin-flipping.
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of quantum magnetism in optical lattices, currently at the
forefront of experimental research. Setting mc2 ¼ 2ð~tx þ
~ty þ ~tzÞ, doublers become very massive and decouple from

the massless fermion at the center of the Brillouin zone
�0 ¼ 0. At the expense of breaking chiral symmetry
½Hd

D; �5� � 0, we have a QS of Wilson fermions invariant
under the antiunitary operator Ua ¼ ðiI � �yÞK, where

K is complex conjugation.
In an effort to preserve chiral symmetry, domain-wall

fermions are introduced in LGTs [17], whose lower-
dimensional descendants are the so-called topological in-
sulators [6,7,10,11]. These holographic phases have an
insulating bulk and metallic boundaries where topologi-
cally protected Dirac fermions reside. We can realize these
phases in experiments by inverting the sign of the Wilson
mass through the laser intensity. We study the effect of
mass anisotropy on a lattice with open z boundaries, which
leads to the energy spectrum in Fig. 2(a). For a critical
mc

x ¼ 1
4m, a mass inversion occurs and some levels leave

the bulk bands to become zero-energy states, whereas for
mc

x ¼ 3
4m the midgap states fuse back into the continuum.

Figure 2(b) displays a solitary 2þ 1 massless Dirac fer-
mion exponentially localized around z ¼ 0, whereas its
doubler appears at z ¼ L. In other words, there are two
distant surfaces with an odd number of massless fermions,
an unambiguous signal of a strong TI.

TIs encode a topological order that has dramatic
consequences on their response to electromagnetic fields

[6–8]. We explore these effects by synthesizing artificialE,
B fields [14], subjected to a modified Gauss law r �E ¼
4��� ðe2=�cÞr� � B, where � is the atomic density.
For small masses [6,7], and after a spin rotation, the
corresponding Bloch states lead to � ¼ � �

2 sgnðcxcyczÞP
dQ

d
5 sgnðmdÞ, which only depends on the axial charge

and the sign of theWilsonmass of each bulk Dirac fermion.
In Fig. 3(a), one observes that the strong TIs correspond to
a nonvanishing axion field � ¼ �modð2�Þ. Besides, this
value is robust with respect to small errors in the imple-
mentation of the assisted hopping c� ¼ c� þ �c�.
It is important to notice that the antiunitary symmetry

fixes � ¼ f0; �g [6]. However, it is possible to go beyond
this scenario [18], by introducing a complex mass m
þ
i ~m
�5, leading to an arbitrary axion � 2 ½0; 2�Þ. Such a
term, which breaksUa, is obtained via Raman transitions,
and in the isotropic limit leads to

� ¼ ��

2

X
d

Qd
5 sgnðmdÞ �

X
d

Qd
5mdtan

�1

�
~m

md

�
; (5)

with a perturbation �� ¼ �P
dQ

d
5mdtan

�1ð ~m=mdÞ. Note
that for ~m ! 0, �� ! 0, we recover the previous result.
Conversely, when ~m 	 jmdj, the transparent expression
�� ¼ � �

2

P
dQ

d
5 jmdj is obtained [Fig. 3(b)]. This pertur-

bation takes on any possible value �� 2 ½��;�Þ leading
to the total axion of Fig. 3(c). Therefore, our atomic gas
constitutes a tunable axion medium where the time and
space dependence of �ðr; tÞ can be externally adjusted by
tailoring the focusing width and intensity of the Raman
lasers ~mðr; tÞ. We can now explore an exotic consequence
of axion electrodynamics: the fractional magnetic capaci-
tor. Engineering the axion medium in Fig. 2(c) by focusing
a strong Raman laser onto an inner region � ¼ �� to zl <
z < zr minimizes the effects of the external trapping po-
tential in experiments [19]. Besides, we can synthesize a
magnetic field generalizing [20] to a lattice [14]. The field

is introduced via Peierls substitution t� ! t�e
�i
R

�
drA

(likewise for ~t�) in the Landau gauge A ¼ ��yx̂, where
� is the magnetic flux in units of the flux quantum. Setting
� ¼ 2�p=q, with p, q 2 Z, allows us to diagonalize the
open-boundary Hamiltonian inside a reduced magnetic
Brillouin zone q 2 ½��;�Þ 
 ½��=q;�=qÞ, and then

FIG. 2 (color online). (a) In-gap zero-energy modes [dashed
(red) lines] for q ¼ ðkx; kyÞ ¼ 0, m=4 � mx � 3m=4, and my ¼
m=2, mz ¼ m=4, for N ¼ 403 sites and open boundaries at z ¼
0, L. (b) Boundary massless Dirac fermion at z ¼ 0, q ¼ 0, and
mx ¼ my ¼ mz ¼ m=2. (c) Scheme for a fractional magnetic

capacitor consisting of an axion well: �ðr; tÞ ¼ �� if z 2
½zl; zr�, and �ðr; tÞ ¼ 0 elsewhere, pierced by a magnetic field
B ¼ Bẑ. This is designed by tuning mx ¼ my ¼ mz=2 ¼ m=4

globally, whereas ~m 	 m is only applied to zl < z < zr.
(d) Accumulated charge on the ‘‘plates’’ of the capacitor, for
N ¼ 303 sites, mx ¼ my ¼ mz=2 ¼ m=4, ~m ¼ 10m (leading to

� ¼ �� for 12< z < 18), and flux �=�0 ¼ 2�=15.

FIG. 3 (color online). (a) Axion index as a function of the
massesmy=m,mx=m, and settingmz ¼ m=2. In theUa invariant

regime, only fixed values of the axion � ¼ f0; �g are allowed.
(b) Perturbations to the axion term �� in the Ua-breaking
regime. (d) Total axion term � in the Ua-breaking regime.
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obtain the density �ðzÞ from the occupied eigenstates.
Then, the charge per quantum flux isQ ¼ 2�l2B�ðzÞ, where
lB ¼ ðc=eBÞ1=2 is the magnetic length. Subtracting the
value in the absence of a magnetic flux leads to Fig. 2(d),
which confirms the continuum prediction Q ¼ Q0�ðz�
zlÞ �Q0�ðz� zrÞ, where Q0 ¼ e

2 , for an optical lattice

with N ¼ 303 sites, and magnetic flux � ¼ 2�=15. In
such a background, the modified Gauss law predicts an
accumulation of fractional charge per flux quantum at the
boundaries. Therefore, our axion medium plays the role of
an exotic fractional capacitor whose boundaries act as
conducting plates. In contrast to usual capacitors, the
charge stored is fractional, and rather than the electric field,
it is the magnetic field which triggers the effect. Let us
recall that the 40K atoms are neutral, and thus this effect
corresponds to an accumulation of atomic density.

We have described a versatile QS capable of realizing
3þ 1 massless or massive Dirac fermions, Wilson fermi-
ons, and 3D topological insulators as an axion medium.
However, we need to address their detection. To distin-
guish between the different types of relativistic bulk fer-
mions, it suffices to measure the number of Dirac points at
zero energy by the atomic density as a function of the
chemical potential [21], a standard technique that relies
on absorption images of the Fermi gas (i.e., the shadow
projected by the atoms on a CCD camera) after the atoms
have been released from the trap. Considerably more chal-
lenging is the detection of the edge states. The ratio be-
tween the number of edge and bulk modes makes the direct
detection by density measurements inefficient. Therefore,
new but also more demanding methods have been proposed
[19,22]. In this Letter, we exploit the consequences of the
axion medium to propose a density-based measurement.
Let us remark that the accumulation of density in the
fractional magnetic capacitor does not suffer from an un-
balanced edge-bulk density ratio. In fact, an extensive
number of atoms will accumulate on the capacitor plates,
which can be detected by phase-contrast imaging methods.
These methods do not require the trap release, such as
absorption imaging, but rather recover the atomic density
in situ by measuring the phase shift of the off-resonant light
diffracted by the Fermi gas [23].

In this Letter, we have presented a feasible scheme of
laser-assisted tunneling in 3D optical lattices, which allows
us to design, control, and probe Wilson fermions. This
approach appears as a promising route towards the first
fully-tunable realization of 3D TIs. We have shown that
fractional magnetic capacitors can be produced and de-
tected using techniques from optical lattices. Besides, since
the axion dynamics is tunable and each boundary can be
singled out, phenomena such as the magnetoelectric effect
or the boundary fractional quantum Hall effect can also be
pursued.
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