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We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in

the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two

examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The

second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-

Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties

of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.
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Introduction.—To date there exist several important
open problems in quantum field theories (QFTs) ranging
from the convergence of the scattering matrix to the infra-
red behavior of quantum chromodynamics (QCD). Such
problems can be probed analytically only by nonperturba-
tive methods that seem to be intractable in three and four
dimensions. As an alternative, numerical techniques or
quantum simulations can play a central role in obtaining
insight into the standard model.

Recently, much interest is focused on simulating QFTs
with cold atoms [1–5]. In the relativistic domain, these
studies are usually limited to generating Dirac fermions
[6,7] and background fields [8–10]. In this Letter, we
propose the realization of Dirac fermions interacting with
dynamic fields by employing cold atoms in optical lattices.
This constitutes the first step towards the quantum simula-
tion of a general model with coupled relativistic fermionic
and bosonic fields. Cold atoms provide a controlled me-
dium with well understood interactions. A wide range of
quantum optics and atomic physics technology allows for
the preparation, manipulation, and detection of a variety of
interesting many-body phenomena. Employing cold atoms
gives us the possibility to consider two, three, and four
spacetime dimensions, to tune the couplings of the inter-
actions and to explore the behavior of multicomponent
fields. Compared to numerical simulations of lattice gauge
theories on computers, a physical simulation on a quantum
system naturally overcomes the sign problem [11].

Here we show how to simulate a two-dimensional self-
interacting model of Dirac fermions, known as the Thirring
model [12,13] and two-dimensional Dirac fermions
coupled to a scalar field that is equivalent to the Gross-
Neveu model. The Hamiltonians of these systems are
supported on one spatial dimension. The necessary build-
ing blocks are the Dirac Hamiltonian, which describes
relativistic fermions, and the interaction of fermions with
themselves or with a dynamic scalar field. This goes
beyond previous proposals concerned with dynamical

fermions coupled to classical fields. We show how the
required components naturally emerge in the low energy
sector of specifically designed lattice Hamiltonians. The
Dirac operator describes the continuum limit of certain
fermionic lattices [8,14,15], as in graphene [16], that re-
markably give rise to both the spin and the linear dispersion
relation. Compared to previous approaches [8] here we
realize the Dirac operator only by the free tunnelling of
single species of atoms. Slow spatial variations of the
lattice couplings result, in the Dirac picture, to an interac-
tion with a scalar field background [10]. When these dis-
tortions are caused by coupling the lattice fermions to
bosons, the resulting fields become dynamic. Self-energy
terms can be implemented, giving rise to a variety of
interesting QFTs. The presented models are exactly solv-
able and serve for demonstrating the ability to simulate
important properties of the standard model such as dy-
namical symmetry breaking and mass generation with
cold atoms.
Thirring model.—Our starting point is the two-

dimensional Thirring model [12,13]. It describes interact-
ing fermions with the Hamiltonian
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Here the �’s are two-dimensional matrices satisfying
f��;��g¼2��� for �, �¼0, 1 with ��� ¼ diagð1;�1Þ,
�5 ¼ �0�1, and � is a two-dimensional spinor with �� ¼
�y�0. The mass of the fermions is m0, g is their dimen-
sionless self-interaction coupling constant, and vs is the
sound velocity taken in high energy to be the speed of light.
This model has exciting physics with the massless case,
m0 ¼ 0, being equivalent to free bosons and the massive
case being equivalent to the Sine-Gordon model [17].
To simulate the Thirring model in an atomic system we

consider a linear bicolorable fermionic lattice with spacing
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l [see Fig. 1(a)] which is subject to the Hubbard
Hamiltonian

H
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Here J is the tunneling coupling between neighboring sites
of the lattice of the same fermionic atoms a and b with

fai; ayj g ¼ fbi; byj g ¼ �ij and all the other anticommutators

vanishing. The a, b index is a spatial distinction within the
unit cell that allows the encoding of the spin degree of
freedom. The tunneling distortion � occurs on alternating
links, as shown in Fig. 1(a), while U is the interactions
coupling between fermions in the same cell.

If we diagonalize the J term of the Hamiltonian in the

a, b basis we find the dispersion relation E�ðpÞ ¼
�2j cospl2 j plotted in Fig. 1(b). It can be easily seen

that there is a single Fermi point, P ¼ �=l, for which
E�ðPÞ ¼ 0. If the lattice is half filled with fermions, which
occupies the valence band completely, the behavior of the
small energy fluctuations is governed by the Hamiltonian
expanded around P. Setting p ¼ Pþ k for jkj � 1=l we
obtain a dispersion that is linear in momentum, k. Hence,
the fermionic tunneling term around the Fermi point can be
efficiently described by the relativistic Dirac Hamiltonian

Jl
R
dkc y

k�2kc k, where c ¼ ða; bÞT corresponds to the

one-dimensional version of the Kogut-Susskind fermions
[14,15]. To assign the appropriate dimensions to the Dirac

fermions we set c ¼ ffiffiffiffiffi
2l

p
�. In this way we obtain the

massless free Dirac fermion term of (1) written in the
momentum representation with �0 ¼ �1, �1 ¼ i�3, and
vs ¼ 2� � 2lJ. It can be verified that the continuum limit
of (2) also gives rise to the rest of the terms in (1) with
m0v

2
s=@ ¼ 2� � 2� and g ¼ 2� � 2Ul. The continuum

limit corresponds to small lattice spacing. This is equiva-
lent to restricting to the low energy sector of the system
where states have a large wavelength support. These are
exactly the states we are interested in for probing the
infrared behavior of QFT, such as the ground state and its
gapped or gapless nature.
The Hamiltonian (2) can be realized with cold atoms

as follows. The one-dimensional fermionic tunneling term
of (2) appears when a fermionic gas is placed in an optical
lattice with very tight confinement in the other two direc-
tions. The � term corresponds to a uniformly decreased
tunneling coupling between sites of the same cell. It can
be generated, e.g., by employing superlattices as seen in
Fig. 1(a). This alternatively signifies that inhomogeneity in
the tunneling coupling due to experimental imperfections
will generate a mass term as observed in [1]. The final U
term results from the interaction between the atoms a and b
present in the same cell (See [18]).
The Thirring model is the simplest relativistic interact-

ing QFT that one could implement in the laboratory with
present technology. Its realization can demonstrate the re-
normalization of mass due to interactions. Indeed, m0 � 0
is the fermionic mass of the classical theory. When the
interactions g are introduced, then a regularization condi-
tion needs to be adopted, jpj<�, where� is a momentum
cutoff that excludes modes with unphysically high energy.
Our system is naturally regularized due to the underlining
lattice structure, where the momentum cutoff is related to
the optical lattice spacing by � ¼ �=l. A quantum field
theory is called renormalizable when this cutoff can be
absorbed in the initial, bare parameters of the model, such
as the mass. The massive Thirring model is such a renor-
malizable theory where the interactions g give rise to the
following regularized mass
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The corresponding coupling regime 0 � U=J < � is well
within the realm of current experiments [19]. This effective
mass is exactly the energy gap above the ground state
obtained for zero momentum excitations, while nonzero
momenta give a continuum spectrum above the gap. Fixing
the lattice spacing, l, according to the wavelength of the
optical lattice, one can plot the effective mass as a function
of the atomic parameters � andU, as seen in Fig. 2. Current
experiments routinely probe such excitation gaps in cold
atom systems [1].
The atomic simulation relies on direct exchange of

atoms, while the value of M increases when the couplings
U or � increase, in a nonperturbative way, or when the
lattice spacing l decreases. The size of the gap can, hence,
be efficiently controlled with a variety of experimental
means which alleviates the low temperature requirements
[20]. This facilitates the experimental measurement of
the gap by a spectral analysis of the atomic system [1].
The renormalization step would then necessitate taking the

a bi 1 i i +1
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FIG. 1. (a) The one-dimensional superlattice with tunneling
fermionic atoms that simulates Dirac fermions. Each unit cell
includes two fermion sites, a and b. An alternating distortion of
the tunneling couplings J and J � � gives rise to the mass term,
�. (b) The energy dispersion relation as a function of momen-
tum, p. At half filling and for � ¼ 0 the low energy behavior is
linear with respect to p, allowing the Dirac operator description.
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‘‘bare’’ massm0 decrease as a function of� so that a finite
constant value of the ‘‘physical’’ mass is obtained. It is
intriguing that this renormalization procedure can be es-
tablished experimentally by studying the spectral behavior
of the fermionic lattice system. Observing such a strong
renormalization of parameters [see Fig. 2] in a system of
cold atomic gases provides a unique fingerprint of strong
correlations.

Fermion-scalar interaction and the Gross-Neveu
model.—Next we consider a two-dimensional model where
an N- color massless Dirac fermion �n n ¼ 1; . . . ; N
interacts with a massive quantized scalar field� according
to the Hamiltonian

H�

@
¼

Z
dxðvs

��n�1p�n þ gm� ��n�n þm2

2
�2Þ: (4)

Here we assume summation over the color index n, g is the
coupling strength between the bosonic and fermionic
fields, and m is a mass scale that can be absorbed in �.
It can be shown that this Hamiltonian yields exactly
equivalent fermionic behavior as the Gross-Neveu model
[21] given by

HGN

@
¼

Z
dx½vs

��n�1p�n þ g2

2
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The HamiltonianHGN describes massless fermions subject
to attractive interactions. This attraction causes the fermi-
ons to create bosonic pairs. Eventually, these composite
bosons condense, breaking spontaneously the Z2 symme-
try, � ! �5�, of Hamiltonian (5), thereby causing the
fermions to dynamically acquire mass. This fascinating
property is very similar to the behavior of the BCS theory
of superconductivity or of four-dimensional QCD. Note
that (4) does not contain a kinetic term for the scalar
field. This corresponds to a Yukawa theory with interac-
tions mediated by infinitely massive fields, making their
propagation pointlike and resulting in the Gross-Neveu
effective four-fermion interaction.

We will now consider a cold atom system that gives rise
to H� [22], which would make it possible to observe the
dynamical mass generation experimentally. The kinetic
term of the Dirac fermions, �n, can be produced by the
same fermionic tunneling term as in (2). In general, a
variety of interaction terms can be generated between
bosonic and fermionic atoms. To conform with (4), we
specifically want the bosonic modes, �, to couple linearly
to the fermionic ones, �n, as dictated by the minimal
coupling prescription. Such an interaction can result
similarly to the m0 term of the Thirring model. A
position-dependent tunneling distortion gives rise to a
classical scalar field configuration. Formally, the quantiza-

tion of the scalar field is obtained by writing it as � ¼
ðdy þ dÞ= ffiffiffi

2
p

, where d is a bosonic mode. Substituting it
intoH� gives the quantized Dirac fermion-scalar model. In
the cold atom setting, this can be achieved by employing a
bosonic condensate interacting with the lattice fermions as
we shall see below.
Consider a one-dimensional fermionic lattice super-

posed with a one-dimensional bosonic lattice, as seen in
Fig. 3. We assume that the dynamics of the atoms is
described by
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Here the an’s and bn’s are N different species of fermionic
atoms (summation over n is assumed) and �i ¼ Dþ di is
an atomic condensate with particle density D and bosonic
operator d. When the couplings of (6) and the condensate
density are appropriately tuned, then the low energy be-
havior of the Hamiltonian H reproduces H�. Indeed, for
J0 ¼ J � �D2 and � ¼ �2D2U one reproduces the de-
sired low energy behavior with g2 ¼ 2� � 2�2l=U and
vs ¼ 2� � 2Jl. To suppress spurious terms we take the
weak fluctuation limit hdydi � D2.
The terms in (6) can be realized in the lattice configu-

ration of Fig. 3 by employing one-dimensional optical
lattices filled with the appropriate species of atoms. All
the required interactions naturally appear in cold atom
settings and can be tuned, e.g., by Feshbach resonances.
The J and J0 terms of (6) result from the tunneling of the
fermionic atoms along their lattice and contribute to the

0.25 0.5
0

0.5

1

FIG. 2. The regularized mass M, in units of @=ðvslÞ, as a
function of the tunneling disorder � for various interaction
strengths U. When no interactions are present the mass in-
creases, as expected, linearly as a function of �. The presence
of interactions dramatically changes this behavior even for
moderate ratios of U=J.

Fermionic 
optical lattice 

Bosonic 
optical lattice 

a b

i 1 i i +1

FIG. 3. The one-dimensional optical lattice with tunneling fer-
mions and bosons that simulates the Dirac fermion-scalar field
model. The bosonic sites are placed in between the fermionic ones
with double spacing. In this way the bosonic population on site i
controls the fermionic tunneling within the same cell.
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free Dirac fermion propagation. The � term results from
the interaction between bosonic and fermionic atoms that
generate a fermionic tunneling controlled by the bosonic
populations. It gives rise to the interaction between the
scalar and the fermion fields. In (6) there is no tunneling
term for the bosonic atoms. Hence, the required system
comprises of independent BECs at each site of a bosonic
lattice [23,24]. The U term describes the interaction be-
tween bosonic atoms on the same site and the � term is
given by their chemical potential. Importantly, small errors
in the values of all of these couplings result in modifica-
tions of the parameters of the effective Hamiltonian (4)
or the generation of similar terms [10]. The persistence
of the effective Dirac description in the low energy limit
is a characteristic also present in the Thirring model
simulation.

It has been shown [21] that the initially massless fermi-
ons of the Gross-Neveu model dynamically acquire an
effective mass. In terms of the atomic parameters, the
emerging mass gap is given by
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This result is exact in the largeN limit but is expected to be
a good approximation even for moderate, experimentally
feasible, values of N of the order of 2 or 3. While the mass,
M, goes to infinity when l goes to zero, the renormalization
prescription absorbs the infinity in the ‘‘bare’’ coupling g.
In the case of the optical lattice realization, we do not need
to renormalize the coupling g as we are working with a
fixed lattice spacing l. Such a simulation can detect the
dynamical generation of mass and verify the predicted
behavior (7) as a function of the atomic couplings.

Conclusions.—The above method can be straightfor-
wardly generalized to other more complex QFTs. For
example, to simulate quantum electrodynamics in two
spacetime dimensions (QED2) we need a similar atomic
setting to the fermion-scalar model described above. Apart
from the addition of a kinetic term for the bosonic field we
need to impose the Gauss constraint in the atomic level. An
atomic model that can give rise to QED2 as well as its
generalization to four dimensions will be presented
elsewhere.

Going beyond QED one could realize the SUðNÞ Yang-
Mills gauge field coupled to an N-color Dirac fermion [see
(4)] that gives rise to QCD. The challenge faced at this
point is to realize the higher order bosonic self-interaction
terms that are necessary to simulate the nonlinear behavior
of the Yang-Mills theory. It is a fascinating perspective to
probe the generation of a mass gap in such a QCD simu-
lation. In parallel, a wealth of possibilities opens for the
simulation of supersymmetric QFTs or combining QFT

and relativity in an atomic system. It is highly plausible
that the experimental realization of the simple models
presented here provide a unique probing tool into the
open questions of interacting relativistic QFTs.
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