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We investigate force transmission through a layer of shear-thickening fluid, here a concentrated

aqueous cornstarch suspension. When a solid body is pushed through this complex fluid and approaches

its containing wall, a hardened volume of the suspension is observed that adds to the leading side of the

body. This volume leads to an imprint on the wall which is made of molding clay. By studying the

geometry of the hardened volume, inferred by the imprint shapes, we find that its geometry is determined

by the size and speed of the body. By characterizing the response of the clay to deformation we show that

the force transmitted through the suspension to the wall is localized. We also study other aspects of this

dynamical hardening of the suspension, such as the effect of the substrate and body shape, and its

relaxation as the imposed straining is stopped.
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Force transmission through a medium is a fundamental
subject and is crucial to many applications. A homogene-
ous solid subjected to an external impact or load transmits
the force through elastic deformation or plastic yield [1]. In
a Newtonian liquid, viscous dissipation gives rise to resist-
ance from the straining fluid. In a granular medium, an
external load causes heterogeneous force transmission,
characterized by branching, chainlike structures [2–7].
Upon an external impact, both the Newtonian fluid and
the dry granular medium tend to dissipate the impact force,
leading to an attenuation of force intensity if measured
from the other side of the medium.

We study force transmission through a wet granular
material, here a dense aqueous suspension of microscopic
cornstarch particles. It is known that such suspensions
shear thicken and can show apparent divergences in
shear viscosity at sufficiently high shear rates [8–11].
Extensional rheology studies likewise show divergences,
and even brittle fracture at high strain rates [12]. The
underlying mechanisms are not completely understood
[13–16] but seem associated with the formation of particle
clusters whose interactions cause jamming. In this study,
we show that such a suspension can give rise to a focused
force transmission. In particular, this force affects an area
smaller or on the scale of the size of the moving object
from which the force is initially applied. This is in contrast
with other systems such as dry granular materials and
viscous fluids, where an applied force becomes more dis-
sipated and distributed through the media.

Stress propagation in dry granular media has been
studied by measuring its response to the passage of a
solid object [17,18]. Our experiment consists of a solid
body—a plastic sphere of several millimeters in radius R—
that moves through a cornstarch suspension (Fig. 1). The
sphere is driven at a speed V in the range of 0:1–100 cm=s

(uniform to within 2% and with acceleration 10 m=s2 at
the start and end of each run) by a PC-controlled linear
motor. It reaches any desired position with an accuracy
within 0.1 mm.
We followed the protocol of Fall et al. [11] in preparing

the suspension. Cornstarch particles (Sigma-Aldrich) are
suspended at 40% by volume in a density matched mixture

FIG. 1 (color online). A sphere, moving through a cornstarch
suspension, creates a focused depression on flat molding clay.
(a) The depression created by a sphere of radius R ¼ 12:7 mm
driven downward by a linear motor. The sphere stops just short
of the clay surface. (b) The depression profile is digitized and
shown as its elevation z against radius r. (c) Depression profiles
created at different speeds V suggest hemispherical shapes. The
slower the speed, the smaller and sharper the depression. The
dashed line shows the corresponding profile of the sphere that
caused all depressions.
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of cesium chloride and water (55% CsCl by weight) [19].
Fall et al. studied the shear rheology of such suspensions
and showed that shear thinning occurs at low shear rates
with a transition to rapid shear thickening and apparent
viscosity divergences at shear rates somewhat larger than
unity [see Fig. 2(a) of [11]]. They interpreted this as a
jamming-induced liquid to solid transition. The minimum
suspension viscosity � isOð10Þ Pa � s, and so the Reynolds
number Re ¼ �RV=� is between 10�1 and 10�5, where �
is the density of the suspension. Hence, inertial effects are
negligible.

The suspension is opaque to visible light. To examine
the force delivery, a piece of molding clay is prepared flat
to within 50 �m and placed beneath the suspension, serv-
ing both as part of the container and as force recorder
[20,21]. Each experimental run starts with the sphere fully
immersed in the suspension, allowing a travel of about
4 cm in the 6 cm deep suspension before the sphere stops
near, but never touching, the clay surface. As the sphere
approaches the bottom, the force transmitted through the
suspension deforms the clay surface once the yield stress
of the molding clay has been exceeded. In a separate
calibration, we determined the yield stress of the clay to
be approximately 170 kPa [see Fig. 4(a)]. The resistive
force upon the sphere is also monitored by a strain gauge
attached between the sphere and the linear motor. The
experiment is repeated while varying sphere size R, mov-
ing speed V, and halting height H above the surface. After
each run, the clay is removed and its surface morphology
digitally reconstructed [22].

If the sphere is halted just above the bottom, nearH ¼ 0,
a depression is created in the clay surface (Fig. 1). This
depression is smooth and hemispheric, and has a radius
smaller than that of the sphere. We were unable to produce

such a feature using a Newtonian fluid, at least in the low
Reynolds number regime, regardless of its viscosity. This
feature is also different from those produced by force
chains in a dry granular material, which would give rise
to distributed, spiky indentations over a broad area [2,6,7].
Note that to have exceeded the clay yield stress for a
typical case considered (V ¼ 2 mm=s, R ¼ 6:4 mm, giv-
ingH � 1 mm and thus a typical strain rate V=H � 2 s�1)
would require a viscosity an order of magnitude bigger
than the largest value measured by Fall et al. in the rapid
shear-thickening regime.
The shape of the depression, its depth h, and curvature �

are reproducible, given V and R. The depressions have near
radial symmetry, with their contour lines at a given eleva-
tion z (measured from the bottom) being within 15% of
perfect circles. We quantify the geometry of the depression
in Fig. 1. It shows, for R ¼ 12:7 mm, the elevation z
against the radius r (averaged over experimental runs) in
a log-log plot, suggesting a parabolic geometry near the
bottom and an overall hemispherical depression. Each
curve shown in this figure was produced with a halting
height just above H ¼ 0, so that the sphere never directly
touches the clay surface. A fit between elevation and
radius, z ¼ �r2=2, yields the depression curvature �.
A large � corresponds to a small, sharp depression. For
instance, as shown in Fig. 1, the curvature and depth of the
depression increase and decrease, respectively, with de-
creasing approach speed. Hence, lower approach speed
produces more focused depressions.
By stopping the sphere at successively reduced heights

H, and then digitizing the consequent depression, we can
reconstruct the process of temporal progress of the depres-
sion. This interpretation relies upon the lack of inertia in
the system and the plastic response of the clay, so that the
depression stops developing immediately upon cessation
of sphere motion. This reconstruction shows that a smooth
depression on the clay develops once the sphere comes to
within a distance h0. For a given speed, once the depression
starts to develop, the gap between the bottom of the solid
sphere and the bottom of the depression tends to be main-
tained at h0, namely, H þ h ¼ h0 [Fig. 2(a)]. Moreover,
Fig. 2(b) suggests that as the depression deepens, its cur-
vature near the bottom tends to saturate. These two obser-
vations lead us to conclude that there exists an effective
‘‘solid’’ or hardened volume, which precedes the solid
sphere as it approaches the wall and which maintains a
hemispherical shape.
The deformation onset distance h0 is speed dependent,

increasing with increasing approach speed. This is differ-
ent from the dry granule case, where the length scale at
which a moving body interacts with an approaching wall is
speed independent [17,18].
By the time the sphere stops at H ¼ 0, the hardened

suspension has ‘‘cast’’ itself a depression into the clay. By
plotting the relative curvature �R and the scaled depression
depth h=R against the strain rate _� ¼ V=R, we observe at
higher strain rates ( _� * 0:2) a collapse of the data (Fig. 3).
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FIG. 2 (color online). The depressions in the clay resulting
from a sphere (R ¼ 12:7 mm) moving at various speeds V and
stopping at heights H. (a) The dependence of depression depth h
on H. (b) The dependence of the normalized depression curva-
ture �R as a function of H.
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This suggests that the hardened suspension assumes
a universal set of shapes parametrized by _�. Hence, lower
strain rates yield localized depressions of large relative
curvature, and increasing strain rate yields depressions
whose size and depth approach the scale of the sphere.
If the system were controlled solely by the strain rate
_� ¼ V=R, then below some critical _� the suspension
would not be sufficiently strained to yield hardening
[11,12]. In that case the extensional flow between the
body and the wall, with characteristic strain rate V=H,
should eventually become strong enough to yield harden-
ing. It may be this feature that explains the lack of collapse
at small _�.

In interacting with the sphere the clay wall develops a
permanent, plastic deformation. The transmitted force FT

being applied by the hardened volume is estimated by
multiplying the depression area by the deformation stress
of the clay [see Fig. 4(a)]. Figure 4(b) shows the estimated
FT plotted against the total resistive force FR acting upon
the sphere as measured by the attached strain gauge. While
these two independent measurements are gratifyingly simi-
lar in scale, the more important feature is that the trans-
mitted force (omitting one outlier) comprises a large
proportion, 75%–95%, of the total force resisting sphere
motion. Hence, we refer to the hardened volume as apply-
ing a ‘‘focused force.’’

Replacing the clay with an elastic material that can relax
back to its undeformed shape allows us to investigate
dynamical aspects of the suspension hardening. We now
replace the molding clay with a cured polydimethylsilox-
ane (PDMS) substrate (10 mm thick). The PDMS is elastic,
with a shear modulus on the order of 250 kPa [23]. An
advantage of PDMS is its transparency, which allows
visualization of its deformation. An example is shown in
Fig. 5(a). The sphere approaches the PDMS wall and stops
at time t ¼ 0 at the height of the (original) surface. As the
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FIG. 4. (a) Calibrating the clay as force recorder. In the ab-
sence of an intervening suspension, the clay exerts a speed-
dependent resistive force upon a hemispherical intruder that
scales with near linearity on the deformation area. The slope
gives the deformation stress SðVÞ plotted in (a) as a function of
speed V. (b) For a sphere moving with speed V through the
cornstarch suspension, the transmitted force FT ¼ SðVÞA, where
A is the resulting depression area, plotted against the resistive
force FR.
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FIG. 3 (color online). The dimensionless curvature �R (a) and
the dimensionless depth h=R (b) of the depression, which
describe the shape of the hardened volume, plotted as a function
of the characteristic strain rate _� ¼ V=R. The insets show two
groups of depression profiles, rescaled by the radius of sphere R,
at two strain rates _� ¼ V=R ¼ 0:5 and 3:1 s�1, respectively.
These profiles (five solid curves in each group) collapse for fixed
_�. For comparison, the rescaled sphere with radius 1 is also
shown.
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FIG. 5 (color online). Recovery of a depression on an elastic
PDMS substrate. (a) The height of the PDMS surface (open
circles) evolves after the sphere stops at t ¼ 0 at the original
height of the surface. The dashed line shows the trajectory of the
sphere. Panels (b)–(e) show side views of the PDMS surface
after the sphere stops moving. The position of the sphere is
superimposed as the dashed curves. A depression made in clay,
under the same conditions, is shown on the left side of (b), and
has a profile similar to the PDMS depression.
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sphere approaches, the PDMS surface is depressed (shown
by the solid curve) following the motion of the sphere
(shown by the dashed curve). Though different from the
clay, the depression on the PDMS has similar size and
curvature [5(b)]. After t ¼ 0 [shadowed in Fig. 5(a)], the
PDMS surface starts to relax while the sphere stays put.
As the PDMS moves back to its original position it essen-
tially maintains the depression curvature [5(b)–5(e)]. The
results suggest that the hardened volume between the
sphere and surface has softened and been pushed out in
about 0.3 s. It should be noted that the PDMS substrate can
recover much more quickly in the absence of the suspen-
sion, on about a 1 ms time scale.

We found that the onset distances h0 were practically
identical for both PDMS, clay, and for the bare, rigidly
backed Plexiglass wall of the container. This comparison
among substrates was done by measuring the force needed
to drive the sphere at constant velocity. The force rose
rapidly once the sphere was within the onset distance,
with the increase being on the order of 103 times.

Our results argue that the motion of a body through a
shear-thickening suspension leads to its local hardening.
The hardened volume can be used to transmit a focused
force, and we speculate that it results from a jamming of
particles within the suspension [24] which is possibly
amplified by the presence of walls. The hardened volume
has a well-defined geometry that no doubt depends upon
both the shape of the moving body and the material strain-
ing that develops around it. To demonstrate this, Fig. 6
shows the depressions that develop as a rigid circular
cylinder approaches a clay substrate at various speeds.
Relative to a spherical body, the depressions are deeper
relative to body diameter and become hemispherical only
at higher speeds. As the shape of the hardened volume is
determined by and modifies the material stress distribution,
this constitutes a nonlinear free-boundary problem for its
shape. We are now pursuing this aspect theoretically. We
also find that the hardened volume relaxes or ‘‘melts’’ with
cessation of external driving. This jamming phenomenon is
different from that occurring within dry granular materials,
which can show extremely long relaxation times [25–27]
given a finite material strain [28].
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