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Artificial spin ice has been recently implemented in two-dimensional arrays of mesoscopic magnetic

wires. We propose a theoretical model of magnetization dynamics in artificial spin ice under the action of

an applied magnetic field. Magnetization reversal is mediated by domain walls carrying two units of

magnetic charge. They are emitted by lattice junctions when the local field exceeds a critical value Hc

required to pull apart magnetic charges of opposite sign. Positive feedback from Coulomb interactions

between magnetic charges induces avalanches in magnetization reversal.
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Spin ice [1] shares some remarkable properties with
water ice [2]: both possess a very large number of low-
energy, nearly degenerate configurations satisfying the
Bernal-Fowler ice rules. In water ice, an O2� ion has two
protons nearby and two farther away; in spin ice, two spins
point into and two away from the center of every tetrahe-
dron of magnetic ions. Because the ice rules are satisfied by
a large fraction of states, the system retains a finite entropy
density down to very low temperatures [3]. Low-frequency
dynamics in ice is associated with the motion of defects
violating the ice rules. In water ice, these defects carry
fractional electric charges of �0:62e (ionic defects) and
�0:38e (Bjerrum defects) [2]. Fractionalization takes an
even more surprising form in spin ice: while the original
degrees of freedom are magnetic dipoles, the defects are
magnetic monopoles [4–8].

The charge of an ice defect is defined in terms of the net
flux of electric field E or magnetic field H emerging from
the defect. On the atomic scale, the flux is obscured by the
fields of background ionic charges or magnetic dipoles.
Coarse graining is required to reveal the field flux of a
defect on longer length scales [5]. An alternative approach
is to alter the model by stretching pointlike spin dipoles
into dumbbell magnets until they touch one another, while
keeping their dipole moments fixed [4]. At the expense of a
slight change in the Hamiltonian, the magnetic charge of a
defect becomes well defined even on the microscopic
scale. It equals �2q � �2�=a, where � is the dipole
moment and a is the length of a dumbbell.

The dumbbell model is realized in artificial spin ice, a
network of submicron ferromagnetic islands [9] or wires
[10–12]. Each element represents a spin whose magnetic
dipole moment is aligned with the wire by shape anisot-
ropy, Fig. 1. The magnetostatic energy is a positive definite
quantity Edip ¼ ð1=8�ÞRH2dV, where the integral is

taken over the entire space. It is minimized when the mag-
netic field H ¼ 0. Edip can be expressed as the Coulomb

interaction of magnetic charges with density �ðrÞ � r �
H=4� ¼ �r �M. The field is zero, and the energy is
minimized, when there are no magnetic charges. This

yields the ice rule: a network node with zero magnetic
charge has zero influx of magnetization. The zero-flux rule
can be satisfied in square ice, Fig. 1(a), but not in honey-
comb ice, Fig. 1(b), also known as kagome ice, where the
allowed values of magnetic charge Q on a site are �q and
�3q in units of q � MA, where M is the magnetization of
the magnetic wire and A is its cross section. Minimization
of magnetic charge restrictsQ to the values of�q, yielding
the modified ice rule for this lattice: two arrows in and one
out, or vice versa [10,11].
The presence of residualmagnetic charges in honeycomb

ice even at low temperaturesmay result in a sequence of two
phase transitions as its temperature is lowered: magnetic
charge order appears first, spin order arises later [13,14].
Unfortunately, thermal fluctuations are virtually absent in
artificial spin ice: reversing the direction of magnetization
in a single wire requires going over an energy barrier of a
few million kelvins [9]. Left to itself, the system remains
forever in the same magnetic microstate. Wang et al. sug-
gested a way to introduce magnetization dynamics into
artificial spin ice by placing the system in a rotating mag-
netic field of an oscillatingmagnitude [15,16], the analog of
fluidizing granular matter through vibration. It has been
suggested [17,18] that such induced dynamics of magneti-
zation effectively create a thermal ensemble with an effec-
tive temperature.
In this Letter we present an entirely different approach

to the dynamics of artificial spin ice that incorporates
the physics of magnetization reversal in ferromagnetic
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FIG. 1 (color online). (a) A configuration of square spin ice
with no magnetic charges. (b) Honeycomb spin ice always has
magnetic charges. (c) Magnetized honeycomb spin ice.
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nanowires, a process mediated by the creation, propaga-
tion, and annihilation of magnetic domain walls [19,20].
It is inherently dissipative [21,22]: as a domain wall prop-
agates, magnetic energy is transferred to the lattice. Like
fluidized granular matter, artificial spin ice is a system far
out of equilibrium and it is not obvious that it can be
described in the framework of equilibrium thermodynam-
ics [23]. Mesoscopic degrees of freedom of spin ice tend
to move downhill in the energy landscape until they come
to rest at a local energy minimum. We use this approach to
describe the dynamics of magnetization observed in hon-
eycomb spin ice [11] in an applied field.

In static equilibrium, artificial spin ice is fully described
by specifying the direction of the magnetization vector in
every link of the lattice. These are Ising variables because
magnetization is aligned with the wire. Sites of the lattice
carry a magnetic charge of�q or�3q as explained above.
Site charges can be deduced from magnetization variables
because the magnetic charge equals the net influx of mag-
netization. The converse is not true because the number of
links exceeds the number of sites by a factor of 3=2, so the
magnetic state of artificial spin ice cannot be described in
terms of charges alone [11]. Spin variables must be speci-
fied for a complete description.

Transitions between static states, triggered by the appli-
cation of an external magnetic field, involve intermediate
states in which the magnetization of one or more links is
being reversed. At the mesoscopic level of our theory, such
links are pictured as having two sections uniformly mag-
netized in opposite directions separated by a domain wall
of magnetic charge Q ¼ �2q [21]. The reversal of mag-
netization in a link begins with the creation of a domain
wall at one of the link ends. The process conserves mag-
netic charge: when a site with magnetic charge�q emits a
domain wall of charge �2q, the charge of the site changes
toþq, Fig. 2. The Zeeman force�2q�0H then pushes the
domain wall to the opposite end of the link.

The critical field required to initiate the reversal can be
estimated as follows: a site of charge þq and a domain
wall �2q attract each other with a Coulomb force F�
�02q

2=ð4�r2Þ at distances r exceeding the characteristic
size of the charges a. The attraction weakens for short
distances r & a when the two charges merge. The maxi-
mum attraction is thus Fmax � �02q

2=ð4�a2Þ. To pull the
charges apart, the Zeeman force 2qB from the applied field
must exceed Fmax, giving the critical field

Hc ¼ q=ð4�a2Þ ¼ Mtw=ð4�a2Þ: (1)

Domain walls in nanowires of submicron width w have the
characteristic size a � 0:6w [24]. For the Permalloy hon-
eycomb network of Qi et al. [11] with magnetizationM ¼
8:6� 105 A=m, width w ¼ 110 nm, and thickness t ¼
23 nm, �0Hc � 50 mT.

When the magnetic field is applied at an angle � to a
link, the Zeeman force comes from the longitudinal com-
ponent H cos�. For this reason we expected the reversal to
occur at a higher fieldHð�Þ ¼ Hc= cos�. A similar angular

dependence has been observed in magnetic wires with
submicron width [25].
To test this phenomenological model, we performed

numerical simulations of magnetization reversal in a single
junction of three ferromagnetic nanowires using micro-
magnetics software package OOMMF [26] with the cell
size of 2 nm� 2 nm� 23 nm. The dependence Hð�Þ is
not symmetric, Fig. 3, and is fit well by the function

Hð�Þ ¼ Hc= cosð�þ �Þ; (2)

where the offset � ¼ 19� reflects an asymmetric distribu-
tion of magnetization at the junction, as we will discuss
elsewhere [27]. The critical-field parameter Hc varied
slightly between links reflecting small random variations
of the width caused by lattice discretization. Two links of
the same junction exhibited slightly different critical fields
Hc, Fig. 3.
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FIG. 2 (color online). Magnetization reversal in honeycomb
spin ice. (a)–(d) A domain wall is emitted at one end of a link,
travels to the other end, and gets absorbed at the junction.
(e)–(f) If the applied field is sufficiently strong, a new domain
wall can be emitted into an adjacent link triggering its magne-
tization reversal. (g)–(k) When a domain wall encounters a site
with like magnetic charge, it induces the emission of a new
domain wall into an adjacent link.

µ0H, mT

 90

 80

 70

 60

 50
θ, deg 30 15 0−15−30−45−60−75

Link 1
Link 2
best fit

FIG. 3 (color online). The reversal field H of two out of three
magnetic wires forming a junction vs the angle between the field
and the axis of the wire whose magnetization is being reversed.
The lines are fits to Eq. (2) with �0Hc ¼ 52:0 and 55.3 mT.
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We use these phenomenological considerations and
micromagnetics simulations to build a discrete mesoscopic
model of magnetization dynamics in artificial spin ice.
We start with a fully magnetized state in which links of
the same orientation have the same direction of magnetiza-
tion and magnetic charges form a staggered pattern. Such a
state can be obtained by placing the system in a strong
magnetic field, Fig. 1(c). In this state, each magnetic wire
has uniform magnetization pointing along the wire’s axis
and each junction contains a magnetic charge of �1 in the
units of q ¼ Mtw determined by the flux of magnetization
into the junction. The external field is then applied in the
opposite direction with a gradually increasing magnitude.
Magnetization reversal begins when the net field Hnet at
one of the junctions exceeds a critical value determined by
Eq. (2). The net magnetic fieldHnet is a superposition of the
applied field Happ and of the demagnetizing field of the

sampleHdem. The latter is computed as a sum of Coulombic
fields of individual junctions, H ¼ Qr=ð4�r3Þ. The junc-
tion, initially containing charge �1, emits a domain wall
with charge �2 and changes its own charge to 	1. The
emitted domain wall is pushed by the magnetic field to the
other end of the link, reversing the link magnetization in the
process, Figs. 2(b) and 2(c). Quenched disorder, inevitably
present in real samples, is modeled by setting at random
slightly different critical fieldsHc in individual wires with a
mean �Hc and a distribution width �Hc.

As the domain wall with charge �2 reaches the other
end of the link, its further fate depends on the sign of the
magnetic charge it meets at the junction. If the charge is of
an opposite sign, 	1, then the domain wall is absorbed by
the junction, Figs. 2(c) and 2(d), whose charge reverts
to �1. If the net field is strong enough to stimulate the
emission of a new domain wall of charge �2 out of this
junction, Fig. 2(e), one of the adjacent links reverses its
magnetization, Fig. 2(f). Otherwise, the evolution stops at
the stage shown in Fig. 2(d).

Alternatively, if the domain wall comes to a junction
with the same sign of charge, Figs. 4(a) and 4(b), it stops
distance a short of the junction thanks to magnetostatic
repulsion. While this could be a new equilibrium position,
the charged domain wall creates a field of strength 2Hc at
the junction, so that the net field at the junction is close
to 3Hc. Its projection onto an adjacent link, 1:5Hc, is
sufficient to stimulate the emission of a new domain wall
of charge �2 into that link, Fig. 4(c). The junction, now
carrying charge of the opposite sign, 	1, pulls in the
original domain wall and settles down in a state with
charge �1, Fig. 4(d).

The sequence illustrated in Fig. 4 explains why ice rule
violations are hard to find in honeycomb ice of Qi et al.
[11]. Unless variations of the critical field are so strong that
Hc at some junctions exceeds 1:5 �Hc, triply charged junc-
tions, Fig. 4(b), are unstable and decay via the emission of
a new domain wall, Figs. 4(c) and 4(d). Permalloy samples
of Qi et al. exhibit a Gaussian distribution of critical fields

with a standard deviation �Hc ¼ 0:04 �Hc [28], so that
states with charge �3 are only transients. Much stronger
disorder exists in cobalt samples of Ladak et al. [12] who
observed magnetization reversal in a field range between
H ¼ 50 and 75 mT. Thus some of the domain walls
encounter junctions whose critical field exceeds 1:5H,
which explains the presence of charges �3.
In the limit of weak disorder, �Hc 
 �Hc, there is

another characteristic scale of the field that becomes
important. The new scale set by the demagnetizing field
of the sampleHdem, is the strength of the field created by a
unit magnetic charge, Q ¼ Mtw, at a neighboring junction
distance L away, H0 ¼ Mtw=ð4�L2Þ. When �Hc � H0,
the reversal of magnetization is controlled mostly by the
effects of quenched disorder, with links reversing in a
largely independent fashion in the order of increasing
critical field Hc. Conversely, when �Hc 
 H0, the rever-
sal proceeds in a correlated fashion because of a positive
feedback: the reversal of magnetization in one link redis-
tributes magnetic charges at its ends, which in turn
increases the net field at adjacent junctions and thus trig-
gers the emission of domain walls there. In samples of Qi
et al., H0 ¼ 0:87 mT, which is comparable to the width of
their reversal region, �Hc ¼ 2 mT.
We simulated magnetization reversal in this model with

the critical fields uniformly distributed in an interval of
width�Hc ¼ 5 mT around the mean �Hc ¼ 50 mT and the
Coulomb field scale H0 ¼ 0:87 mT. For simplicity we set
the offset angle � ¼ 0. A sample containing 937 links was
initially magnetized along one subset of links, Fig. 1(c).
Subsequently, the field was switched off and a reversal
curve MðHÞ was measured in field rotated through angle
� from the initial direction. For 120�, quenched disorder
dominates so that magnetization reversals occur largely
independently, in two stages. Links magnetized against
the field switch when the applied field is within the range
�Hc � �Hc=2, whereas links magnetized at 120� to the
field switch in the range 2 �Hc � �Hc. The net magnetiza-
tion Mx grows in an approximately linear fashion in both
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FIG. 4 (color online). Magnetization reversal in uniformly
magnetized spin ice. (a)–(b) In the bulk, the reversal in a link
magnetized against the field would lead to the formation of triple
charge, which can only happen when the field is of order 3Hc.
(c) Instead, the reversal occurs first in links magnetized at 120�
to the field when H � 2Hc. (d)–(g) At the edge, the reversal
begins when H � Hc and propagates into the bulk.
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ranges, Fig. 5, as expected for links with a uniform
distribution of Hc. Links do not reverse completely inde-
pendently from one another: as noted previously, the redis-
tribution of magnetic charges induced by the reversal of
magnetization in one link may trigger another reversal
nearby. We observed that reversals often involves small
groups of links. As can be seen in the inset of Fig. 5,
the distribution of the number of links s reversing
in a single event is Gaussian, DðsÞ / expð�s2=2�2Þ,
with � ¼ 4:6.

An entirely different process is observed when the field
is rotated through � ¼ 180�. In this case, Coulomb inter-
actions play a major role and the reversal proceeds through
avalanches evidenced by steps in MxðHÞ, Fig. 5. When the
field is near �Hc, the reversal cannot begin in the bulk
because links parallel to the applied field have the wrong
sign of magnetic charges at the ends and will reverse only
in a much higher field (of order 3Hc). Links at the edges
have no such problem and the reversal starts when a site at
the edge emits a domain wall, Figs. 4(d) and 4(e). When
the domain wall reaches the other end of the link, it
encounters a site with like magnetic charge and triggers
the emission of a new domain wall, Fig. 4(f), and the
reversal of magnetization in an adjacent link, Fig. 4(g).
This triggers an avalanche of reversals that stops when the
traveling domain wall is absorbed by a junction with a
large critical field Hc or runs into already reversed links
[12,29]. The distribution of avalanche lengths (Fig. 5) fits a
power law, DðsÞ / s��, with the exponent � ¼ 1:6, indica-
tive of self-organized criticality [30]. Chain reversals in-
volving 3 links have been reported by Ladak et al. [12] in
this geometry; avalanches involving up to 39 links have
been observed by Daunheimer et al. [28].

We have presented a discrete model of artificial spin ice
where magnetization dynamics is mediated by domain
walls carrying magnetic charge. Interactions between mag-
netic charges compete with the effects of quenched disor-
der. In samples with low disorder, positive feedback from
charge redistribution is responsible for magnetic ava-
lanches that have been observed in some experimental
situations.
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FIG. 5 (color online). Simulated magnetization reversals. A
sample is initially magnetized in a strong field directed as in
Fig. 1(c). Subsequently, the field is switched off and reapplied at
angles � ¼ 120� and 180� to the initial direction. Vertical
dashed lines are at �Hc ��Hc=2 and 2 �Hc ��Hc. Inset:
Distribution of avalanche lengths DðsÞ in the range of fields
near �Hc. Deviations near the bottom of the graph are due to
statistical noise.
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