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Nonlinear real-time response of interacting particles is studied on the example of a one-dimensional

tight-binding model of spinless fermions driven by electric field. Using equations of motion and numerical

methods we show that for a nonintegrable case at finite temperatures the major effect of nonlinearity can

be taken into account within the linear response formalism extended by a renormalization of the kinetic

energy due to the Joule heating. On the other hand, integrable systems show on constant driving a different

universality with a damped oscillating current whereby the frequency is related but not equal to the Bloch

oscillations.
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Only recently have the time-resolved measurements
provided important information on the nonequilibrium
short-time dynamics of correlated bulk materials [1], nano-
structures [2], and optical lattice systems [3]. In contrast to
the developments in the experimental methods, theoretical
description of the real-time dynamics remains a difficult
and challenging task. As the exact time evolution is known
only for very few models (see the discussion in Ref. [4]),
most of unbiased results have been obtained from ad-
vanced numerical approaches like exact diagonalization
(ED) [5], time-dependent density matrix renormalization
group (tDMRG) [6], or nonequilibrium dynamical mean-
field theory (nDMFT) [7]. These approaches allow for
studying various phenomena, e.g., the nonlinear transport
through interacting nanosystems [8], the electric-field in-
duced breakdown of the Mott insulator [5,9], or Bloch
oscillations [7,10]. In most cases, theoretical predictions
for the real-time response can be formulated only on the
basis of numerical studies.

It is understood that for a weak driving force, the real-
time response is determined by the equilibrium correlation
functions as described by the linear-response (LR) theory.
This theory has recently been extended to account for a
system that was previously driven out of equilibrium [11].
Further on we focus on the case of the charge current IðtÞ in
a one-dimensional (1D) system as induced by electric field
FðtÞ, whereby the relevant equilibrium LR function is the
dynamical conductivity �ð!Þ. For a generic (nonintegr-
able) system of interacting (correlated) fermions at finite
temperature T > 0 one expects within the LR regime the
relaxation of current due to (umklapp) scattering processes
and hence finite dc value �0 ¼ �ð0Þ. This, in turn, leads to
a steady current under a constant driving field F. In con-
trast, it has been recognized that integrable systems in spite
of interaction reveal a dissipationless component of the
current response even at T > 0 as manifested by a finite
charge stiffness DðT > 0Þ> 0 [12]. Hence, the qualitative

difference between both types of systems is expected to
remain even for the nonlinear transport.
In this Letter, we address two aspects of the nonlinear

transport in an isolated system of interacting tight-binding
fermions under a time-dependent driving force. (i) How to
generalize the LR response approach of generic systems at
T > 0 to stronger fields and longer steady driving? Here we
show that the dominating lowest-order mechanism beyond
the LR regime is the increase of internal system energy or
Joule-type heating (although we are not dealing with re-
laxation to canonical equilibrium) proportional to the
square of the electric field. It could be accounted for by
renormalization of the kinetic energy [as the sum rule for
�ð!Þ and, consequently, the relevant �0]. This extension
allows one to predict strongly nonlinear response without
explicit solution of the von Neumann or the time-
dependent Schrödinger equations. (ii) Is there a qualitative
difference in nonlinear response between integrable and
nonintegrable systems? Our results reveal a clear distinc-
tion between both categories whereby the response of
integrable system to a steady field Fðt > 0Þ ¼ const re-
sembles the (damped) Bloch oscillations of noninteracting
(NI) fermions, however, with nontrivially modified oscil-
lation frequency.
We investigate an isolated 1D system of charged spinless

fermions with periodic boundary conditions. The system is

threaded by a time-dependent magnetic flux ~�ðtÞ that
enters only the kinetic energy term Hk

H ¼ Hk þHI;

Hk ¼ �th
X
j

fei�ðtÞcyjþ1cj þ H:c:g; (1)

where � ¼ ~�=L is the flux per bond and L is the number
of sites. We put further on th ¼ 1. The time-dependent flux

induces an electric field F ¼ � _�. The charge current
operator can be written as
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J ¼ � @H

@ ~�
¼ i

L

X
j

fei�ðtÞcyjþ1cj � H:c:g: (2)

Before specifying a particular form of the interaction
term HI it is instructive to derive simple equations of
motion for the total energy EðtÞ ¼ hHðtÞi ¼ Tr½�ðtÞHðtÞ�,
the kinetic energy EkðtÞ ¼ hHkðtÞi, and the current IðtÞ ¼
hJðtÞi. Making use of the von Neumann equation i _�ðtÞ ¼
½HðtÞ; �ðtÞ� one can easily find the relations

_EðtÞ ¼ �iTrf½HðtÞ; �ðtÞ�HðtÞg þ _�ðtÞTr
�
�ðtÞ@H

@�

�

¼ LFðtÞIðtÞ; (3)

_EkðtÞ ¼ ih½HðtÞ; HkðtÞ�i þ LFðtÞIðtÞ; (4)

_IðtÞ ¼ ih½HðtÞ; JðtÞ�i � FðtÞEkðtÞ
L

: (5)

In the case of NI fermions HI ¼ 0, H ¼ Hk, commutators
in Eqs. (4) and (5) vanish and for FðtÞ ¼ const, these
equations lead to harmonic oscillations with a frequency
!B ¼ F, the solution known as Bloch oscillations.

Equation (5) offers also a nontrivial approach to the
nonlinear inverse problem; i.e., for arbitrary HI one can
find such tuning of FðtÞ that the induced current follows
required time profile IaðtÞ. Namely, putting IaðtÞ in the
left-hand side of Eq. (5) one can solve the equation for
FðtÞ. This value of FðtÞ determines the magnetic flux that
should be used in the subsequent time step of the numerical
solution of the von Neumann equation. Numerical results
based on this method will be presented elsewhere.

In the following we study the 1D t� V �W model,

HI ¼ V
X
j

n̂j n̂jþ1 þW
X
j

n̂j n̂jþ2; (6)

where n̂j ¼ cyj cj, whereas V and W are (repulsive) inter-

actions on the nearest-neighbor and next-nearest-neighbor
sites, respectively. In the absence of the external field the
t� V (W ¼ 0) model is integrable and within the LR
theory �ð!Þ has anomalous properties [12]. In particular,
it can show a dissipationless component even at T > 0, i.e.,
�ð!� 0Þ ¼ DðTÞ�ð!Þ. W � 0 breaks the integrability
leading to a finite dc �0ðT > 0Þ<1 [12]. In the following
we focus on the metallic regime of the half-filled systems
with n ¼ Ne=L ¼ 1=2 and V < 2th.

Our aim is to study primarily a generic situation at T > 0
to avoid more specific cases emerging from the ground
state. We perform the numerical evolution of the many-
fermion wave function j�lðtÞi. The initial j�lð0Þi should
in principle be chosen as eigenstates of Hð0Þ distributed
according to the canonical ensemble. Since the latter ap-
proach is possible only via full ED (typically L < 16 for
the problem under consideration), we instead work using
the microcanonical Lanczos method (MCLM) [13]

allowing systems up to L ¼ 26. First, we numerically
generate initial j�lð0Þi, l ¼ 1, Ns with energy Eð0Þ ¼
hHð0Þi corresponding to the canonical value for given T
(and L), but as well with a small energy uncertainty �2E ¼
h½Hð0Þ � Eð0Þ�2i. The time evolution of j�lðtÞi is then
calculated by step-vise change of �ðtÞ in small time incre-
ments �t � 1 generating at each step Lanczos basis
(NL � 10) to calculate the evolution j�lðt� �tÞi !
j�lðtÞi (see Ref. [14] for the Lanczos time propagation
method). The described procedure is very robust and can
be easily tested by changing Ns, �E, �t. In the following
examples we study rather universal (but nontrivial) regime
of quite elevated T � 5where we useNs ¼ 10, �E ¼ 0:01,
�t ¼ 0:01. Here, a sufficient condition for the time evolu-
tion is to stay with t & 1=�E. Note that for systems con-
sidered (L ¼ 26) number of basis states is typically
Nst � 107 so that �E is still much bigger than the average
level distance.
First, we study a nonintegrable case with V ¼ 1:4 and

W ¼ 1, when LR�ð!Þ [12] is rather featureless, i.e., broad
in !. Therefore, we expect that numerical results are free
of artifacts originating from some peculiar features of
�ð!Þ. Figure 1 shows EkðtÞ as a function of F2t [panel
(a)] and the time dependence of the renormalized current
IðtÞ=½EkðtÞF� [panel (b)] for a system driven by a constant
field Fðt > 0Þ ¼ F. One can see that �EkðtÞ goes expo-
nentially to zero with the decay rate / F2 and that the ratio
IðtÞ=½EkðtÞF� is almost constant for longer t. The dominat-
ing nonlinear effect thus consists in the increase of Ek.
Since the latter also represents the sum rule

R
�ð!Þd! /

jEkj, we formulate and test the following conjecture: IðtÞ
may be well approximated by the LR theory extended to
account for the increase of EkðtÞ,

IðtÞ ’ IERðtÞ ¼ EkðtÞ
Ekð0Þ ILRðtÞ; (7)
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FIG. 1 (color online). Real-time response: (a) the kinetic en-
ergy EkðtÞ, and (b) the renormalized current IðtÞ=ðEkðtÞFÞ ob-
tained for L ¼ 26, V ¼ 1:4, and W ¼ 1. The electric field F is
switched on at t ¼ 0 and kept constant for t > 0.
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ILRðtÞ ¼
Z t

0
dt0�ðt� t0ÞFðt0Þ; (8)

where the conductivity response �ðt� t0Þ [evaluated from
�ð!Þ] and consequently ILRðtÞ are determined within ini-
tial equilibrium state. Equation (7) alone does not allow
one to predict the real-time response without solving the
time-dependent Schrödinger equation, since EkðtÞ is still
needed. The accurate scaling presented in Fig. 1(a) to-
gether with Eqs. (3) and (7) indicate that the increase of
Ek is just proportional to the increase of the total energy

_E kðtÞ ¼ � _EðtÞ ¼ �LFIERðtÞ: (9)

Therefore, in the long-time regime of a driving with FðtÞ ¼
F one obtains IERðtÞ ¼ �0FEkðtÞ=Ekð0Þ and, consequently,
�EkðtÞ / expð��F2tÞ with �> 0. The coefficient � is
independent of F and can be estimated from the initial
equilibrium state,

� ¼ EkðtÞ � Ekð0Þ
EðtÞ � Eð0Þ ’ @Ekð0Þ

@T

�
@Eð0Þ
@T

��1
: (10)

The set of Eqs. (7)–(10) fully determines IERðtÞ. Therefore,
similarly to the LR theory, the real-time response can be
calculated without explicit solution of the time-dependent
problem. From the numerical point of view, these equa-
tions are not more demanding than the LR theory, as the
only extension consists in the differential Eq. (9). In Fig. 2
we show the accuracy of the approximation given by
Eq. (7). This figure demonstrates also the significance of
the increase of total energy or Joule heating as the domi-
nating nonlinear mechanism. Here, the value of � has
been determined from full diagonalization of a 10-site
Hamiltonian.

We now turn our attention to the real-time response of an
integrable interacting system, i.e., W ¼ 0 case, where the
above extension of the LR theory clearly breaks down.
Now, a relevant reference is the NI V ¼ 0 system, where
for FðtÞ ¼ F current and the kinetic energy exhibit Bloch
oscillations with!B ¼ F. It is expected that even at V > 0
a dissipationless component of current will retain the simi-
larity to a NI system. We present in the following numeri-
cal results for the integrable metallic case V ¼ 1, W ¼ 0,
whereD (at T ! 1) covers approximately half of the total
spectral weight of �ð!Þ.
The inset in Fig. 3 shows Ið�Þ with � ¼ �Ft for the

integrable t� V system driven by a constant electric field
F. In order to demonstrate the reliability of MCLM and the
Lanczos time evolution, we show also results obtained
from the full diagonalization of the L ¼ 14 system in the
canonical ensemble. In the latter case, the time evolution
has been determined from a direct solution of the
von Neumann equation by the Runge-Kutta method.
Contrary to the previously discussed W � 0 case, one
observes a strong oscillatory behavior. For large enough
F > F� � 0:5, the frequency of the current oscillations !
[evaluated here from the second maximum of IðtÞ] is
approximately the same as !B of NI fermions. Similar
prediction has been obtained within nDMFT (see the dis-
cussion of a metallic phase in Ref. [7]). However, in the
regime of a low electric fields F < F�, the correlated
system oscillates faster than !B. Within the investigated
t� V model, !=!B is found to increase logarithmically
when the electric field decreases (see Fig. 3). The effect is
present also for other V < 2th although evidently the loga-
rithmic regime disappears for V ! 0 where the NI univer-
sality sets in; i.e., in this case the crossover also moves to
F� ! 0.
At present we are unable to provide a physical explana-

tion for the enhancement of !=!B or to predict whether
the logarithmic scaling breaks down for very low F. At
least it is evident that the F > F� response is similar to NI
fermions in that both IðtÞ and EkðtÞ ¼ EðtÞ change sign
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FIG. 2 (color online). IðtÞ for L ¼ 26, V ¼ 1:4, and W ¼ 1.
Arrows indicate the instances of time, when the electric field is
switched on (all panels) and off (upper left panel). Full lines
represent results obtained via unrestricted numerical solution,
whereas dotted and dashed lines show approximate results of
the LR theory, ILRðtÞ, and the extended LR approach, IERðtÞ,
respectively.
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FIG. 3 (color online). Current-oscillation frequency ! (nor-
malized to !B of NI fermions) vs field F evaluated for L ¼ 26,
V ¼ 1, W ¼ 0 (crosses). Inset: I vs flux j�j (continuous lines).
Dashed lines (inset) and squares (main panel) show results from
the full diagonalization of the L ¼ 14 system.
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during the evolution (see Fig. 4). On the contrary, the
kinetic energy remains negative in the weak-field regime.

Still, for sufficiently short times of driving t > 0 the
system’s state is almost the initial one, i.e., �ðtÞ ’ �ð0Þ,
and the changes of IðtÞ and EkðtÞ come from their explicit
flux dependencies in Eqs. (1) and (2). Then, one can easily
find from Eqs. (4) and (5) that ½EkðtÞ�2 þ ½LIðtÞ�2 ’
½Ekð0Þ�2 holds independently of HI. It explains, why the
initial response as well as the strong-field response of a
correlated system are the same as the response of NI
fermions [15]. Moreover, assuming that the EkðtÞ and IðtÞ
do not cross the outer circle in Fig. 4 (what holds true in all
investigated cases), one finds that the magnitude of current
is bounded from above by the initial kinetic energy.

In conclusion, for a generic, isolated system of tight-
binding electrons we present a simple extension of the LR
theory taking into account the change of kinetic energy.
This approach gives a very satisfactory description of
numerical results, at least for high enough T. Here, the
basic condition is that in spite of (time-dependent) driving,
the system at all times satisfies the quasiequilibrium rela-
tion between the kinetic energy EkðtÞ and the total energy
EðtÞ. It seems plausible that the necessary condition for
such a development is (fast enough) relaxation of current,
here due to the umklapp processes. It remains to be inves-
tigated whether a similar behavior applies to interacting
systems beyond the tight-binding description [when, e.g.,
the sum rule for �ð!Þ is not directly Ek] or in low T
regime. In the latter case the linear dependence _EkðtÞ /
_EðtÞ should probably be replaced with a more general one
EkðtÞ ¼ Ek½EðtÞ�.

On the other hand, integrable systems show strikingly
different behavior. To first approximation the current IðtÞ
under constant driving reveals oscillations with the domi-
nant dependence only on the flux �ðtÞ. While at large

F > F� this has clear connection to the Bloch oscillations
of tight-binding electrons with characteristic !�!B, the
effective ! is increasing for lower F < F� while at the
same time oscillations are becoming damped (in fact the
damping is found to be strongest at F� F�). One part of
this phenomena, in particular, the damping, can be attrib-
uted to the breaking of integrability by introducing time-
dependent �ðtÞ. Oscillations themselves in the low-field
regime are the signature of a coherent behavior which
has to be intimately related to finite charge stiffness
DðT > 0Þ> 0 since they disappear outside the metallic
regime, e.g., for V > 2th at half-filing n ¼ 1=2.
Alternatively, if the field is switched off in this regime
before reaching Ek � 0 then the current relaxes to a finite
Iðt ¼ 1Þ> 0 being a direct consequence ofDðT > 0Þ> 0.
In any case, the observed phenomena reveal that even in
weak fields the response of (near) integrable systems is far
from the one expected from the equilibrium LR theory, but
at the same time quite universal representing an open
challenge for a proper explanation and also possible ex-
perimental observation.
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A. Branschädel et al., arXiv:1004.4178v1.

[7] J. K. Freericks, V.M. Turkowski, and V. Zlatić, Phys. Rev.
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