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The crossover between low and high density regimes of exciton-polariton condensates is examined

using a BCS wave-function approach. Our approach is an extension of the BEC-BCS crossover theory for

excitons, but includes a cavity photon field. The approach can describe both the low density limit, where

the system can be described as a Bose-Einstein condensate (BEC) of exciton-polaritons, and the high

density limit, where the system enters a photon-dominated regime. In contrast to the exciton BEC-BCS

crossover where the system approaches an electron-hole plasma, the polariton high density limit has

strongly correlated electron-hole pairs. At intermediate densities, there is a regime with BCS-like

properties, with a peak at nonzero momentum of the singlet pair function. We calculate the expected

photoluminescence and give several experimental signatures of the crossover.
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In recent years there is an increasing consensus that a
Bose-Einstein condensate (BEC) of exciton polaritons has
been realized experimentally [1,2]. For exciton BECs, it is
well known that the system crosses over into a BCS state
of weakly correlated electrons and holes at high density
[3,4]. Such a crossover was realized with fermionic atoms
by varying the attractive interaction between using
Feshbach resonances [5], providing an experimental dem-
onstration of the crossover. A natural question is, then,
does a BEC-BCS crossover also occur for exciton-
polaritons? Littlewood and co-workers have examined
this question and have predicted that with increasing
density the system transitions from a BEC state to a
photon BEC state [6–9]. In an intermediate density regime
under suitable conditions they predict a BCS-like regime
[7]. The model that they deal with is a model of non-
interacting excitons coupled to a common photonic cavity.
In this model, the excitons do not contain an internal
electron-hole structure and are treated as spins localized
on lattice sites. Our purpose here is to include the electron
and hole components as well as their Coulomb interaction.
By doing so we find that several new effects are present
which have implications on experimentally observable
quantities.

The Hamiltonian we consider is

H ¼ Hkin þHCoul þHph ��n;
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where ek and hk are the fermion annihilation operators for

electrons and holes with momentum k, VðqÞ ¼ e2

2�q is the

Coulomb interaction, me and mh are the electron and hole
effective masses, e is the electron charge, � is the permit-
tivity, a is the cavity photon annihilation operator, ! is the
cavity photon energy, � is the coupling strength of the

cavity photon to the electrons and holes, and n ¼ ayaþP
k½eykek þ hykhk� is the total number of particles per unit

area. We introduce a chemical potential � into the
Hamiltonian in order to fix the density.
We use a BCS wave-function ansatz of the form

j�i ¼ exp½�ay � �2=2�Y
k

½uk þ vke
y
kh

y
�k�j0i; (2)

where u2k þ v2
k ¼ 1 in analogy to the BCS wave function

used for excitons [3,4]. An additional coherent state pho-
tonic term is included of the same form as in Ref. [6]. The
photon density is nph ¼ �2 and the electron-hole density is

neh ¼ P
kv

2
k, giving a total particle density n ¼ nph þ neh.

The BCS wave function (2) is equivalent to the solution
of the Hamiltonian (1) by mean field theory [10]. Following
the mean field derivation, we assume a pairing Hamiltonian
in Eq. (1) and restrict k0 ¼ �k in the attractive Coulomb
interaction. In the repulsive Coulomb terms we assume a
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Hartree Fock approximation, and restrict q ¼ k0 � k.
Hartree terms (corresponding to q ¼ 0), are not present
due to the assumption of charge neutrality [4]. Expanding

the operators eykek, h
y
khk, e

y
kh

y
�k, and a around their mean

values and keeping only linear terms gives

H¼E0þ�DðaþayÞþð!��ÞayaþX
k

�kðeykekþhykhkÞ

�X
k

ð�k���Þðeykhy�kþh�kekÞ (3)

where �k ¼ @
2k2

2m ��� Xk, Xk ¼ P
k0Vðk� k0Þheyk0ek0 i,

�k ¼
P

k0Vðk� k0Þhey
k0h

y
�k0 i, D ¼ P

kheykhy�ki, E0 ¼P
k½Xkheykeki þ�kheykhy�ki� � 2�D� and we have taken

all expectation values as real, 2=m ¼ 1=me þ 1=mh,

� ¼ hai, and heykeki ¼ hhy�kh�ki due to charge neutrality.

The photonic part may be diagonalized by introducing the
operator By ¼ ay � c, and demanding that the off-
diagonal terms vanish. This gives the condition

� ¼ � �D

!��
: (4)

The remaining part of the Hamiltonian may be diagonal-

ized by a transformation ek ¼ uk�k0 þ vk�
y
k1, hyk ¼

�vk�k0 þ uk�
y
k1. Demanding that the off-diagonal terms

disappear, we obtain the Hamiltonian

H ¼ �0 þ ð!��ÞByBþX
k

Ekð�y
k0�k0 þ �y

k1�k1Þ; (5)

where �0 ¼
P

k½�k � Ek þ �kheykhy�ki þ Xkheykeki� þ
�2D2=ð!��Þ. The parameters uk and vk satisfy the
standard BCS algebra [10]
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k ¼
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heykhy�ki ¼ ukvk ¼ �k ���

2Ek

; (7)

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
k þ ð�k ���Þ2

q
: (8)

The gap energy Emin
k is defined to be the value of Ek

minimized over all momenta k. In our numerical results,
we use units such that the momentum is measured in units
of 1=aB, and densities are measured in units of 1=a2B, where
the Bohr radius is aB ¼ 4��@2=me2. The energy is mea-
sured in units E0 ¼ e2=4��aB (SI units used throughout).
In the low density limit with no photon field, the exciton
energy isE=E0 ¼ �1. Zero detuning therefore corresponds
to a photon energy of !=E0 ¼ �1 (the photon energy is
negative since we measure energies relative to the band
gap energy). Equations (6)–(8) with (4) are solved self-
consistently to obtain our results.

In Fig. 1(a) the occupation probability v2
k of electron-hole

pairs is shown. In the low density limit (� � �1:4), the
distribution coincides with the exciton wave function vk /
1=ð1þ k2Þ2 [4]. Furthermore, the density of electron-hole
pairs and photons is nearly equal in this limit [Fig. 1(b)].
Figure 1(c) shows the energy per electron-hole pair, which
approaches an energy ofE=E0 � �1:4. The lowering of the

energy is due to the strong coupling and anticrossing of
the exciton and photon to form a lower polariton. Finally,
the gap energy shown in Fig. 1(d) is equal to the energy of a
polariton Emin

k � 1:4. The gap energy in this case is the

energy required to turn a polariton into a free electron-hole
pair. We thus conclude that exciton-polaritons are correctly
reproduced in the low density limit.
As the density is increased, Fig. 1(a) reveals that the

momentum distribution spreads out to higher momentum
states. This is precisely the opposite behavior to what is
expected in the excitonic BEC-BCS crossover. In a standard
BCS state, the instability towards forming a Cooper pair is
weakened with increasing density, because the electron-hole
attraction becomes increasingly screened by the surrounding
electrons and holes. This results in a vk distribution that
approaches a Fermi step for high density, for the excitonic
case. In the case of exciton-polaritons, the electron-hole
attraction in fact becomes enhanced with increasing density.
This is evidenced by the gap energy which increases with
density in Fig. 1(d), instead of decreasing in the exciton case.
What is the origin for this enhanced attraction?

Figure 1(b) reveals that at high density the photon number
greatly exceeds that of the electron-hole number. This can
be explained due to a difference in the particle statistics of
the two excitations. Photons are true bosonic particles,
hence any number of them can be excited with an energy
cost !. Meanwhile, electron-hole pairs are fermions, and
suffer a phase space filling effect. In order to excite more
fermionic particles, electrons and holes of increasingly
higher momenta and energy must be occupied in order
to increase the particle number. Thus it is favorable to excite
photons rather than electron-hole pairs to minimize the total
energy, explaining the large imbalance in these numbers.
Given that at high density there is inevitably a large

number of photons, we may return to the original
Hamiltonian (1) to see the consequences. In the high
density limit we may replace the photon operator by a
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FIG. 1 (color online). (a) The occupation probability v2
k of

electron-hole pairs of momentum k for a cavity photon energy of
! ¼ �1 and photon coupling � ¼ 0:1. The dotted line shows
the 1s exciton wave function for comparison. The (b) electron-
hole pair, photon, and total particle density, (c) energy per
electron-hole pair, (d) gap energy versus chemical potential.
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classical c number, which we consider to be very large
a � � � 1. Discarding all terms that do not contain this
factor, we have

H � ��
X
k

½eykhy�k þ h�kek� þ �2!: (9)

The solution of this Hamiltonian is the BCS wave function

(2) with uk ¼ �vk ¼ 1=
ffiffiffi
2

p
, agreeing with the numerical

analysis that the average occupation number approaches
1=2 for all k. The BCS gap in this limit corresponds to a
single excitation of the Hamiltonian, which has an energy

Emin
k � 2��: (10)

Thus with increasing density the BCS gap continues to
increase in agreement with Fig. 1(d).

Now we ask to what extent the polariton system pos-
sesses BCS features, rather than merely a crossover be-
tween a polariton BEC state to a photon-dominated regime.
The criterion given in Ref. [7] is based on a comparison of
the energy scales of the BCS gap energy Emin

k with the

temperature required for condensation to occur kBTBEC ¼
�@2n=mpol, where mpol is the polariton mass. In this defi-

nition, the state can be described as ‘‘BCS-like’’ if the
energy to disassociate a polariton is lower than the thermal
excitation energy to prevent a BEC from occurring. In our
units, this gives kBTBEC=E0 � 22 000na2B, where we used
mpol � 10�5m0 and aB ¼ 10 nm, and m0 is the free elec-

tron mass. In terms of Fig. 1(d), this criterion is always
much higher than the gap energy Emin

k , for densities ex-

ceeding n � 6:5� 107 cm�2. Experimentally, such den-
sities have already been achieved, giving the result that all
current polariton BECs are all in the ‘‘BCS-like’’ regime,
according to this criterion.

There is, however, another sense that the polaritons
can be classified as BCS-like. For an excitonic BCS state,
the singlet pair function �ðkÞ ¼ ukvk is peaked near
the vicinity of the Fermi momentum and has a width of
the order of the inverse of the BCS coherence [11].
Figure 2(a) shows the singlet pair function for our polariton
system, which is peaked at nonzero momentum for large
densities. The location of this peak has a nonzero momen-
tum above a critical density [Fig. 2(c)]. Such behavior is
also seen in the excitonic BEC-BCS crossover. The differ-
ence here is that instead of the singlet pair function becom-
ing sharper with increasing density, here the pair wave
function becomes broader. Using blue-detuned (more ex-
citonic) polaritons�ðkÞmore resembles the excitonic BCS
state [Fig. 2(b)]. An alternative definition of a polariton
BCS phase may be signaled by the presence of the peak of
the singlet pair function at nonzero momentum.

We now turn to the photoluminescence (PL) character-
istics of the transition between low and high density.
Examining the high density limit first, using a similar
approximation to (9), we use the Hamiltonian

H ¼ �
X
k

½�þ
k aþ ��

k a
y� þ!ayaþ �g

2

X
k

�z
k; (11)

where�þ
k ¼ eykh

y
�k, �k ¼ @

2k2=m,�z
k ¼ eykek ¼ hy�kh�k,

and we have explicitly included the semiconductor band
gap energy �g required to create an electron-hole pair. The

PL spectrum is calculated using [12]

Ið�Þ ¼ 1

�
Re

Z 1

0
hAyð�ÞAð0Þie�i��=@d�; (12)

where A is the operator that couples the system to the
external PL field. In the case of polaritons, the PL is
generally observed by leakage of the photon field through
the microcavity, hence A ¼ a. It is also possible to observe
the PL via a secondary means, from the coupling to the
exciton field A ¼ ��

k . This type of coupling is that mea-

sured for pure excitons and should also be present in
principle for polaritons. Experimentally the excitonic PL
is emitted homogeneously in all directions, whereas the
photonic PL is emitted perpendicularly to the sample sur-
face. Evaluating the time correlation function (12) for both
types of couplings under a mean field approximation, we
find a spectrum as shown in Fig. 3(a). For the exciton
coupling, the PL spectrum is identical to the familiar
Mollow’s triplet spectrum found in resonant fluorescence
[12], in agreement with Fig. 2 of Ref. [7]. For the photon
coupling only the central peak is present. The reason
for this difference is illustrated by the single spin version

of (11), which has eigenstates for high density j�; Ni ¼
ðj "; N � 1i � j #; NiÞ= ffiffiffi

2
p

, where N is the number of
photons. For large N, the photon operator does not

cause transitions between the � eigenstates: aj�; Ni �ffiffiffiffi
N

p j�; N � 1i. In contrast, the exciton coupling does
cause a transition ��j�; Ni � ðjþ; N � 1i � j�;

N � 1iÞ= ffiffiffi
2

p
, giving the side peaks.

In the low density limit, either type of coupling gives the
same PL spectrum, giving the familiar emission centered at
the lower polariton energy. For the photon coupling case, in
both the low and high density limits, the action of applying
the operator A ¼ a does not cause transitions to excited
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FIG. 2 (color online). The singlet pair function �ðkÞ ¼ ukvk

for various chemical potentials as shown for (a) zero detuning
! ¼ �E0 (b) blue detuning ! ¼ 0. (c) The singlet pair function
peak momenta for detunings shown. (d) The particle-particle
interaction energy V and condensate interaction energy Vn as a
function of the density.
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states. Assuming this is true for all intermediate densities,
we use the results of our ground state BCS wave function to
obtain the PL emission parameters. From the results of the
self-consistent equations (6)–(8), we may write down an

effective Hamiltonian for the BCS theory Heff ¼ �bybþ
1
2

a2B
A Vbybybb, where b is a bosonic operator for the effec-

tive theory, � ¼ dE
dn and V ¼ 1

a2B

d2E
dn2

, where A is the sample

area and E is an energy density. The peak energy of the PL
is the energy of adding a single particle to the system,
which is by definition equal to the chemical potential�. To
determine the linewidth of the spectrum, we use the
method presented in Ref. [13] to incorporate the effect of
self-interaction on the PL. The self-interaction energy V is
shown in Fig. 2(d). At low densities, the self-interaction
energy is in agreement with the polariton-polariton inter-

action V � 6E0jXj4 [14], where X ¼ 1=
ffiffiffi
2

p
is the polariton

Hopfield coefficient at zero detuning. The condensate self-
interaction energy nV reaches a maximum at intermediate
density, which we attribute to the fact that at high density
the particles are more likely to be present in a photonic
state, which have no interactions with other particles.
Inputting the condensate interaction energy into the theory
of Ref. [13] gives the PL spectrum Fig. 3(b). The PL
spectrum gradually shifts from the lower polariton energy
to the cavity photon energy, with a asymmetric linewidth
with an exponential tail towards high energy. The linewidth
narrows again in the high density limit, due to the de-
creased interactions.

In the excitonic PL, the side peaks of the Mollow’s
triplet should disappear at intermediate densities, when
the saturation effect of the excitons becomes negligible.
The central peak of the excitonic PL should exhibit a
similar behavior to that shown in Fig. 3(b). We note that
only the zero center of mass momentum PL is considered
in our analysis and we leave calculations of dispersion
characteristics as future work.

We have analyzed the crossover between low and high
density limits of exciton-polariton condensates using a BCS
wave-function approach. Contrary to the exciton case, the

electron-hole pairs have a reduced separation in the high
density limit due to the dominant cavity photon field.
Intuitively we picture this state as a strong cavity photon
field continuously creating and destroying electron-hole
pairs at localized positions in the quantum well, resulting
in a half occupancy of v2

k. In the intermediate density regime,

the system has BCS-like properties in the sense that the pair-
breaking energy is less than the energy required for destroy-
ing the condensate, and a peak in the singlet pair function
develops. The photonic PL shifts from the lower polariton
energy towards the cavity photon energy with a broadening
of the linewidth due to the increased interactions. In the high
density limit the excitonic PL should exhibit a Mollow’s
triplet type structure, originating from the saturation of the
electron-hole occupancy. Inclusion of nonequilibrium effects
resulting from a coupling to an external bath is left as future
work. We expect that inclusion of this effect will reduce the
energy gap due to pair-breaking dephasing processes [15].
The densities required for observing the crossover should be
observable in current experimental systems.
This work is supported by the Special Coordination

Funds for Promoting Science and Technology, the FIRST
program for JSPS, Navy/SPAWAR Grant No. N66001-09-
1-2024, MEXT, and NICT.
Note added in proof.—Recently, we became aware that

the strong binding of electrons and holes due to the photon
field was also independently found in Ref. [16].
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FIG. 3 (color online). (a) The PL intensity of the BCS model in
the high density limit for the photonic PL and excitonic PL. A
reservoir coupling � is assumed for both cases, giving the
linewidths as shown. (b) The photonic PL for the BCS model
at all densities. Zero detuning is assumed in all cases.
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