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We provide an argument based on flux insertion to show that certain superconductors with a nontrivial

topological invariant have protected zero modes in their vortex cores. This argument has the flavor of a

two-dimensional index theorem and applies to disordered systems as well. It also provides a new way of

understanding the zero modes in the vortex cores of a spinless px þ ipy superconductor. Applying this

approach to superconductors with and without time-reversal and spin-rotational symmetry, we predict the

necessary and sufficient conditions for protected zero modes to exist in their vortices.
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Fermionic zero-energy modes (eigenstates of the
Hamiltonian whose energy is zero) are expected to occur
as localized excitations of vortices of certain superconduc-
tors such as a spinless px þ ipy superconductor. These

modes, also called Majorana modes, have attracted a fair
bit of recent theoretical attention due to the fact that they
can obey non-Abelian statistics and have potential appli-
cations in decoherence free quantum computation [1–4].
While vortices in ordinary s-wave superconductors also
have subgap modes which have energy of order �2=Ef, in

a px þ ipy superconductor the lowest lying modes are

predicted to be at zero energy [5].
Various topological arguments have been advanced

to explain the existence of the Majorana modes [6–11].
Nevertheless, a general and simple 2D topological argu-
ment using standard mathematical techniques that can
emulate the success of the Jackiw-Rebbi theory for solitons
and zero modes in 1D [12] has been elusive.

Here, we present a new argument for the existence of the
zero modes which is quite general and relies neither on an
analytic solution of the Bogoliubov–de Gennes (BdG)
equations nor on dimensional reduction or the quasiclass-
ical approximation. We hope that this will be particularly
useful in the context of recent efforts to find Majorana
modes in systems other than a px þ ipy superconductor

[13]. We discuss and contrast our method with some
previous topological methods in the study of vortices to-
wards the end of this Letter. A second aspect of this work is
a systematic study of the different symmetry classes in
the Altland-Zirnbauer classification and a prediction of
the zero modes in these systems based on the topological
class.

Using a flux insertion argument, we first show that a
certain class of insulators with � flux inserted through a
plaquette have exact zero-energy eigenstates which are
topologically protected in the sense that their existence is
connected to the Hall conductance of the insulator. We then
use these to deduce the conditions for protected zero modes
to exist in the superconductors. This argument thus has the
flavor of a 2D index theorem.

Consider a gapped 2D tight binding insulator on an
infinite lattice with an even number of orbitals, 2s per
site. The Hamiltonian can be written in the form H ¼P

i;j�
y
i Hij�j, where Hij is a 2s� 2s dimensional matrix

and�j ¼ ðc j;�ÞT , where j is an index for the position and
� for the orbital. The Fermi energy is set to zero.
In the first instance, we study systems with neither spin-

rotational symmetry (SRS) nor time-reversal symmetry
(TRS). We further restrict our study to Hamiltonians H
which posses a symmetry analogous to that of BdG
Hamiltonians. In other words, we assume the existence
of an antiunitary operator S such that SHS�1 ¼ �H .
Furthermore, we assume that S acting on single particle
position eigenkets in the Hilbert space produces a linear
combination of kets at the same position, i.e., S�jS

�1 ¼
Uj�j, andUj is a 2s� 2s dimensional unitary matrix. The

symmetry under S also implies that UiHijU
�1
j ¼ �H�

ij.

Consider the effect of flux insertion through an infini-
tesimal tube in an infinite sample of such a system.
Each hopping term in the matrix Hij gets multiplied by

the phase factor exp½iðe=@ÞRi
j dr �A�, where the integral is

along the hopping path to be and A is the vector potential
due to the flux tube. It is easy to verify that, due to the BdG
symmetry, SH ðAÞS�1 ¼ �H ð�AÞ, whereH ðAÞ is the
Hamiltonian of the system with the vector potential A. It
follows that ifH ð�Þ is the Hamiltonian in the presence of
a flux �, then SH ð�ÞS�1 ¼ �H ð��Þ. Thus if H ð�Þ
has an eigenstate with eigenvalue E, then H ð��Þ has an
eigenstate with eigenvalue �E.
Now suppose the system has a quantized Hall conduc-

tance of pe2=2�@. Then as a flux of 2�@=e is adiabatically
inserted through the flux tube, a total charge of pe flows in
from infinity towards the flux tube [14]. In an infinite
sample, the total spectral flow, i.e., the total number of
states which cross the gap at the Fermi surface from below
minus the number of states which cross it from above, is
equal to p [14,15].
Let nð�Þ be the number of eigenstates of

the Hamiltonian whose energy is zero at the flux �.
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A schematic example of the energy spectrum of extended
states close to the Fermi energy as a function of flux
is plotted in Fig. 1. The function nð�Þ is nonzero only
for � 2 f�a;�b;

2�@
2e ; �c; �dg, where �c ¼ 2���a

and �d ¼ 2���b. The above discussion implies that
nð2���Þ ¼ nð�Þ.

Apart from the states which traverse the gap and thus
cross the Fermi energy an odd number of times, there
might also be states which cross the Fermi energy an
even number of times as shown in the figure. Thus, the
total number of zero-energy states at all fluxes is pþ 2m,
where p is the total Chern number of the ground state. It
follows that when p is odd, nð0Þ þ nð2�@=2eÞ ¼ 2kþ 1,
where k is some integer.

At zero flux, the Fermi energy lies in a gap. Thus, nð0Þ ¼
0, which in turn implies that nð2�@=2eÞ is an odd integer
when p is odd. Since the integer p is a topological invari-
ant, which cannot change under small transformations of
the Hamiltonian, the zero mode is topologically protected.

We now use this result to study superconductors. In the
remainder of the Letter, we are frequently going to con-
sider Hamiltonians with 2s degrees of freedom per site, and
we write such matrices in the form

M11 M12

My
12 M22

� �
: (1)

Consider a tight binding BCS Hamiltonian for fermions
hopping on a lattice which can be written in the form

H S ¼
P

i;j�
Ny
i HB

ij�
N
j , where �N

i ¼ ð’i;�; ’
y
i;�ÞT is a

Nambu spinor. Here, i and j stand for positions, and � is
an index for the orbitals and spin which runs from 1 to s.
The matrix HB is the BdG Hamiltonian which is of the
form of Eq. (1) withM11 ¼ h,M12 ¼ �, andM22 ¼ �hT ,
where h is the single particle Hamiltonian and � is the
gap matrix. We can map the Hamiltonian H S to the
Hamiltonian of an insulator H I (which we call the asso-

ciated insulator) given by H I ¼ P
ij�

y
i H

B
ij�j, where

�j ¼ ðc j;�; c j;�ÞT .

We first study BdG Hamiltonians with neither TRS nor
SRS. Imagine inserting an infinitesimal tube containing a
flux of 2�@=2e through the center of a plaquette in such a
way that the low-energy configuration where the current
j / ðr�� eAÞ vanishes is attained. In this configuration,
the phase winds around by 2� around the flux tube. Let ri
and �i be, respectively, the distance from the origin and the
polar angle of site i in a coordinate system with the origin
located at the position of the flux tube. Then the single

particle terms in the Hamiltonian transform as hij ! h0ij ¼
hije

iðe=@Þ
R

dr�A ¼ hije
ið�i��jÞ=2, where A is chosen to be

@

2erð�Þ, while the gap matrix transforms as �ij ! �0
ij ¼

�eið�iþ�jÞ=2.
The BdG eigenvalue equation in the presence of the

vortex is thus H0c ¼ Ec , where c ¼ ðu; vÞT and H0 has
the form of Eq. (1) with M11 ¼ h0, M12 ¼ �0, and M22 ¼
�ðh0ÞT . Let ~ui ¼ ui, ~vi ¼ ei�ivi. Then ~c ¼ ð~u; ~vÞT satis-

fies the eigenvalue equationH00 ~c ¼ E ~c , whereH00 can be
written in the form of Eq. (1) with M11 ¼ h0, M12 ¼ �00,
M22 ¼ �ðh00Þ, h00ij ¼ hjie

ið�i��jÞ=2, and�00
ij ¼ �ije

ið�i��jÞ=2.
We now replace the superconductor with the associated

insulator H I with the same flux configuration, i.e., half a
quantum of flux inserted at the origin, which lies at the
center of a plaquette. It is easy to verify thatH Ið�Þ can be
written as

P
ij�

y
i H

00
ij�j with H00 as given above. Further-

more, H I satisfies SH IS
�1 ¼ �H I, since it is derived

from a BdG Hamiltonian and the analysis for the zero
modes for insulatorsmade previously can therefore be used.
The necessary and sufficient condition for the existence

of an exact zero-energy modewhich is localized around the
flux tube is therefore that the Hall conductance of H I is
pe2=2�@, where p is odd [16]. If this condition is met, it
follows that there is a zero-energy mode localized around
the plaquette containing the tube. Since the Hall conduc-
tance is a robust topological invariant, the existence of the
zero mode for the superconductor is also topologically
protected. The Hall conductance for noninteracting
Hamiltonians is one of the most well studied topological
invariants in condensed matter physics [14,15] and can
readily be computed in terms of the projection operator
for the ground state [17].
It is important to note that the spectral equivalence holds

only for flux tubes which contain multiples of 2�@=2e flux,
and this does not imply that arbitrary flux configurations of
the two systems have the same spectrum. In this context, it
is interesting to note that spectral flow of vortex core states
occurs during the motion of a vortex in a supercurrent and
is associated with forces on the vortex (see Ref. [18] and
references therein).
A more realistic description of a vortex would include

a finite region larger than a single plaquette where the
magnetic field is nonzero rather than the situation consid-
ered above where the flux is confined to a single plaquette.
The more realistic Hamiltonian describing such a vortex
may be written as a sumH ¼ H 0 þ V, whereH 0 is the

c dab

e

2

e

2

1

1

2

FIG. 1 (color online). A schematic plot of the energy E versus
�, where � is the flux inserted through a plaquette of the
insulator with Bogoliubov symmetry. Only states which lie close
to the Fermi energy at � ¼ 0 are shown. The dashed line is the
single energy curve which traverses the gap as the flux is
changed from 0 to 2�@=e.
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Hamiltonian which corresponds to the idealized vortex
discussed above and V is a local perturbation in the sense
that Vij ¼ 0 sufficiently far from the vortex. If there is an

odd number of Majorana zero-energy states, then the
Hilbert space of the idealized vortex has one unpaired
fermionic mode. No local perturbation such as V can alter
the Hilbert space structure. It follows that the zero mode
persists in the more realistic configuration. It also follows
from the above arguments that there is an odd (even)
number of zero modes for vortices whose phase winds
around the vortex by an odd (even) multiple of 2� for
superconductors whose auxiliary insulators have a Hall
conductance which is an odd multiple of e2=2�@.

We now intend to study superconductors in the other
symmetry classes in the Altland-Zirnbauer classification
scheme [19] starting with superconductors which are TRS
invariant and belong to class DIII. As before, we first study
the corresponding insulators with time-reversal symmetry
which are classified by a Z2 invariant. Their Hamiltonians
have the property that they can be continuously deformed
to one which can be written as the sum of two
Hamiltonians, each of which has an odd (even) Hall con-
ductance if the Hamiltonian has a nontrivial (trivial) topo-
logical invariant. When flux is introduced through a narrow
flux tube for these insulators, by using arguments very
similar to those used above for the insulators which break
time-reversal symmetry, one can show that the number of
pairs of zero modes at � flux is odd for the case when the
invariant is nontrivial and even when the invariant
is trivial.

Superconductors in class DIII are classified by a Z2

invariant [20] and can be mapped onto insulators with
time-reversal symmetry whose Hamiltonians satisfy
SHS�1 ¼ �H and which have the same spectrum, ex-
actly as in the case of superconductors without TRS or
SRS. Using this mapping and the results for the corre-
sponding insulators stated in the previous paragraph, one
can show that these superconductors have an odd number
of Kramers pairs of zero-energy modes if and only if they
belong to the nontrivial topological class. In the presence
of a more realistic vortex configuration, time-reversal sym-
metry is broken near the vortex core. However, if there is
an odd number of vortices and if the magnetic fields far
from the cores vanish, then there will still be one robust
pair of zero-energy edge modes. These may be regarded as
a single Dirac mode.

Hamiltonians of superconductors with SRS but not TRS
fall in the class C of the Altland-Zirnbauer symmetry
classes [19]. These Hamiltonians may be regarded as the

sum of H " ¼ ðc y
" ; c #ÞH"ðc "; c

y
# ÞT and H # ¼

ðc y
# ; c "ÞH#ðc #; c

y
" ÞT [19], where H" and H# have the

form of Eq. (1) with M11 ¼ h, M12 ¼ �, M22 ¼ �hT

and M11 ¼ h, M12 ¼ ��, M22 ¼ �hT , respectively. The
spectra of H" and H# are identical. If ðu; vÞT written in the

particle-hole basis is a zero mode of H", then ðu;�vÞT is a

zero mode ofH#. The superconductor may be mapped onto

an insulator H I, which is the sum of two single particle
Hamiltonians H I;" and H I;# and which may be regarded

as separate systems. The condition that in the presence
of a vortex the matrixH" has an odd number of zero modes

is, as deduced in the study of Hamiltonians of class D, that
the Hall conductance of the corresponding insulator
�xyðH I;"Þ2�@=e2 is an odd integer. The net Hall conduc-

tance �xyðHIÞ is twice that of HI;" and is always an even

integer. Thus, when the Hall conductance of H I has the
form 2pe2=2�@, where p is an odd integer, the system has
an odd number of pairs of zero modes in its vortices, while
when p is even the system has an even (or zero) number of
pairs of zero modes.
Superconductors with both TRS and SRS, which belong

to the class CI, may be regarded as belonging to the trivial
Z2 class of superconductors with TRS. These supercon-
ductors thus have no topologically protected zero modes in
their vortex cores. Ordinary s-wave superconductors with
spin-rotation symmetry fall in this class and are thus pre-
dicted to have no topologically protected zero modes.
Our results are summarized in Table I. Most continuum

models can be simulated to an arbitrary degree of accuracy
by a series of lattice models. Since the results derived
above are not limited to a particular tight binding model,
one expects that the analysis presented above extends also
to continuum models.
To test these ideas, we have performed computer simu-

lations for a tight binding superconductor on a square
lattice with the following Hamiltonian:

H ¼ 1

2

X
i;j

f�cyi;jci;j � ðcyi;jþ1ci;j þ cyiþ1;jci;jÞ þ iðcyiþ1;jc
y
i;j

� cyi;jc
y
iþ1;jÞ � ðcyi;jþ1c

y
i;j � cyi;jc

y
i;jþ1Þg þ H:c:

The Hamiltonian is gapless at � ¼ 2. For � close to 2,
the low-energy effective Hamiltonian for this model re-
sembles that of a px þ ipy superfluid [Eq. (1) of Ref. [2]]

whose superconducting equivalent is possibly realized in
strontium ruthenate. For 0<�< 2, the corresponding
auxiliary insulator has a nontrivial Hall conductance and
in accordance with our arguments above, we find numeri-
cally the existence of a localized zero mode associated
with an isolated vortex in the energy spectrum. On the

TABLE I. Conditions for superconductors in the various sym-
metry classes to support protected zero modes in vortex cores or
edges, expressed as conditions on H I, the insulator associated
with the superconductor. The last column indicates whether there
is a single protected Majorana mode (M) or a protected pair of
modes (D). No protected modes exist for the class CI.

Class TRS SRS Condition on H I Mode

D No No �xye
2=h ¼ 2k� 1 M

C No Yes �xye
2=h ¼ 2ð2k� 1Þ D

DIII Yes No Nontrivial Z2 D

CI Yes Yes � � � � � �
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other hand, for 2<�, the Hall conductance of the auxil-
iary insulator vanishes and there is no localized zero mode
at an isolated vortex. When more than one vortex is con-
sidered, there is a splitting in the energy levels, and the
magnitude of the splitting when the two vortices are a
distance d apart is proportional to the overlap between
two zero-energy eigenstates of an isolated vortex placed
at the same distance. The splitting therefore falls exponen-
tially as the distance between the vortices.

Finally, we note that the arguments made above are also
applicable in the case when there is a mobility gap in the
absence of flux rather than a gap to all states since the states
within the mobility gap have zero Chern number and their
energies return to their initial values when the flux inserted
varies from 0 to 2�@=e.

It is useful to compare this method to other topological
methods used in the analysis of zero modes in vortices.
The BdG equations for the vortex core states can be
reduced to a set of coupled first-order equations which
can be solved to yield a spectrum which is linear in the
generalized angular momentum [9,21]. In 3D systems, the
spectral asymmetry index NðkzÞ [i.e., the difference be-
tween the number of positive and negative eigenvalues of
the BdG equations as defined in Eq. (1) of Ref. [22]] can be
calculated doing a gradient expansion of the Greens func-
tion. IfNðkzÞ changes sign as a function of kz, this indicates
the presence of an anomalous branch of zero modes and
topological invariants can be defined to detect this change
of sign. One may treat the BdG Hamiltonian at a quasi-
classical level as a function of the impact parameter b of
the classical trajectory and position and momentum ðx; pxÞ
along a classical trajectory. The existence of anomalous
branches can be inferred from the zeros of the classical
energy Eðb; x; pxÞ and can also be expressed as a topologi-
cal invariant [23]. The flat band in the spectrum in certain
types of vortices [5] can be argued to be topological stable
by applying various discrete symmetries such as time-
reversal and particle-hole exchange to the spectrum [24].

An alternative approach is presented in Sec. 23.2 of
Ref. [9]. The energy EðQÞ of the low-lying modes can be
written as E ¼ �mpfb!0 [10]. The right-hand side of this

equation can be treated as an effective Hamiltonian, with
the operator Q ¼ bpf, which is the angular momentum,

being written as�i @
@� , where � is the angle of the classical

trajectory of the particle. This together with the boundary
conditions which depend on the form of the pairing and the
order parameter provides a condition for whenQ is integer
and when it is half integer.

The key difference between this class of arguments and
the one used here is that, in our analysis, we do not use the

quasiclassical approximation and hence our method
applies to cases where this approximation cannot easily
be used. Examples include topological superconductors
where the Fermi momentum might be small such as re-
cent proposals of proximity-induced superconductors and
superconductors with impurities which lack translational
symmetry even in the absence of a vortex. In both cases,
the Chern number can be calculated to determine the
existence of zero modes.
In summary, we have provided a simple and general

argument which shows that certain topological classes of
superconductors have topologically protected, robust zero
modes, which can either be unpaired Majorana modes or
come in pairs. We applied this analysis to the various
symmetry classes of superconducting Hamiltonians.
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