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The diffusion rate of hydrogen in Nb was calculated using ab initiomolecular dynamics simulations. At

low temperatures the hydrogen is strongly trapped in a local strain field which is caused by the elastic

response of the lattice. At elevated temperatures, the residence time (�) of hydrogen in an interstitial site is

not sufficient for fully developing the local strain field. This unbinding of the interstitial hydrogen and the

strain field increases the hopping rate (1=�) at elevated temperatures (> 400 K). These results call for a

revision of the conceptual framework of diffusion of hydrogen in transition metals at elevated

temperatures.
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Metal-hydrogen systems serve as a prototype for lattice
gas models. Because of the simplicity of the resulting
changes in the electronic structure, hydrogen in metals
can also be viewed as the most simple obtainable class of
alloys. In the classical limit, where quantum effects can be
ignored, the diffusion rate of hydrogen is experimentally
well established for most metals [1–4]. At elevated tem-
peratures, the diffusion rate is generally found to obey
the phenomenological Arrhenius law and the underlying
mechanism is commonly understood as interstitial hydro-
gen hopping in a static potential. The attempted jump rate
is ascribed to the vibrational frequency of the interstitial,
while the activation energy is thought to arise from the
barrier separating the interstitial sites. This classical ap-
proach is conceptually appealing and describes the diffu-
sion of hydrogen well at elevated temperatures [3].

When a hydrogen atom is absorbed in a transition metal,
it attracts and localizes some of the neighboring metal d
electrons and as a consequence the interatomic metal
binding diminishes [5,6]. The interstitial hydrogen thereby
gives rise to a local strain field, which decays as r�2 where
r is the distance from the hydrogen atom [3]. The displace-
ment of the lattice in response to the interstitial hydrogen
causes large changes in the energy landscape, resulting
from a competition between a lowering of the total energy
of the hydrogen and the repulsive elastic energy of the
lattice. The equilibrium state of the displacement is called
the self-trapped state and has been determined theoreti-
cally, using empirical potentials, in niobium by Fukai to
0.475 eV [5], and by Li and Wahnström to 0.30 eV [7].
Using ab initio methods, Sundell and Wahnström calcu-
lated the self-trapping energy to 0.189 eV [8,9]. The quan-
tum theory of diffusion developed by Flynn and Stoneham
[10] showed that the self-trapping has a big influence on
tunneling. The effect of self-trapping on the energy land-
scape is illustrated in Fig. 1 and will be discussed later.

The interstitial hydrogen and its associated displacement
field can be regarded as a quasiparticle and is often referred
to as the small-polaron, or lattice polaron, in analogy with

the electron polaron in dielectric materials [11–13]. The
polaron has an effective mass that depends on the displaced
metal atoms and is typically much larger than the mass of
the interstitial hydrogen. The diffusion of hydrogen in
metals therefore involves two entities: the light interstitial
and the strain field. Thus, although the Arrhenius descrip-
tion can be used to reproduce diffusion rates at elevated
temperatures, the conceptual basis for it can be said to be
incomplete. We will address this issue using ab initio
molecular dynamic simulations, including the diffusion
of both the interstitial and the corresponding local
strain field. The properties of hydrogen in niobium are

FIG. 1 (color online). The self-trapping lowers the hydrogen-
polaron quasiparticle energy level ES with respect to the un-
strained lattice. EI is the difference in energy when moving the
hydrogen to the closest tetrahedral site, keeping the position of
the strain field fixed with respect to the lattice. EIIa and EIIb are
similarly the energies for moving the hydrogen to the next
nearest tetrahedral sites. The geometries of the jumps are shown
in the bottom panel.
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exceedingly well explored and we will therefore use these
results as a benchmark for our calculations.

The calculations were performed with one hydrogen
atom in a supercell of 54 Nb atoms, in the temperature
range 200 to 2400 K, using ab initio molecular dynamics
(MD). The simulations were performed in steps of 50 K for
temperatures below 1500 K and in steps of 100 K in the
temperature range between 1500 and 2400 K. At tempera-
tures below 400 K, the simulation times were too short to
obtain good enough diffusion statistics. Forces were calcu-
lated from density functional theory [14] as implemented in
the VASP code [15,16]. The ab initio calculationswere based
on the generalized gradient approximation [17] (GGA)
and the projector-augmented wave (PAW) method [18].
A cutoff energy of 200 eV was used. The � point alone
was sufficient for sampling the Brillouin zone. To check
the k-point convergence on the diffusion, a 2� 2� 2
Monkhorst-pack grid was used for an evaluation at 900 K.
The simulations were performed using a canonical en-
semble with volume, particle number, and temperature
fixed. The velocities were rescaled after every time step,
with one time step corresponding to 1 femtosecond (fs).
A simulation at 950 K using a microcanonical ensemble,
with volume, particle number, and energy fixed, was used to
validate the choice of ensemble. The simulation time for
each temperature ranged from 200 ps to 1 ns, depending on
temperature.

In the dilute � phase, hydrogen occupies tetrahedral
sites in a random configuration [2,3] which causes an
isotropic volume expansion [1]. Figure 2 shows an isosur-
face of the hydrogen density obtained from the simulations
at 550 K where the hydrogen density clearly concentrates
at the tetrahedral interstitial sites in the Nb bcc lattice, in
good agreement with the experimental results.

The energy landscape of a hydrogen atom self-trapped at
a tetrahedral site is illustrated in Fig. 1. The potential far
away from the hydrogen atom, describing the potential in
the absence of self-trapping, is shown in the upper left. The
energy of the surrounding sites can be obtained at 0 K, by
moving the proton to different sites while keeping the
lattice, including the self-trapped state, frozen. Tracing
the energy of the T sites yields the potential seen by
instantaneous hopping of hydrogen and we define the
resulting energy landscape as the excited states of the
quasiparticle. The filled point symbolizes the proton in
its self-trapped state, and the corresponding self-trapping
energy is denoted by ES. Three cases are considered in the
lower panel of Fig. 1: a jump from the self-trapped site to
one of the nearest tetrahedral sites on the 4T ring resulting
in an energy difference EI ¼ 0:071 eV, a double jump
process on the 4T ring, denoted as IIa with the energy
EIIa ¼ 0:148 eV, and a double jump on the 6T ring, giving
EIIb ¼ 0:189 eV is denoted as IIb. These energies describe
the energy landscape within the polaron, and should not be
confused with activation energies for hydrogen diffusion,
since the energies correspond to differences between
energy levels, not barrier heights, and the potential is
dynamic. The equilibrium self-trapped energy at 0 K was
determined to be ES ¼ 0:206 eV including zero point
energy (ZPE) and 0.170 eV without ZPE, which is in
agreement with the results of Sundell and Wahnström
(0.189 eV) [8,9].
The diffusion coefficients were calculated from the

mean residence time of hydrogen, h�i, [19] in the tempera-
ture range 400 to 2400 K and are plotted in Fig. 3.
The activation energies in regions II and III are 0.151(4)

and 0.176(5) eV, respectively. No experimental results are
available for temperatures corresponding to region III in

FIG. 2 (color online). An isosurface of the hydrogen density in
bcc Nb at 550 K. Notice how the points cluster around the
tetrahedral sites in excellent agreement with experimental results
[2]. The lines connecting the tetrahedral sites show the 4T and 6T
rings. The gray spheres are Nb atoms.
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FIG. 3 (color online). Arrhenius plot of the calculated and
experimental diffusion coefficients. The black circles and squares
show our calculated diffusion rates. The experimentally obtained
rates are drawn in red (solid, 873–1390 K) [20] and blue (dashed)
[26]. The blue triangles are results obtained from classical
MD [23].
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the figure, while the results in region II are in excellent
agreement with the experimental data, 0.144(3) eV [20].
In region I, the agreement is less compelling. The limited
cell size will cause an artificial polaron self-interaction,
through the periodic boundary conditions. Using the cell

size (10 Å) and the speed of sound in Nb (34 �A=ps) we
determined the characteristic interaction time to be 300 fs,
which agrees well with 600 K as a crossing point. We
cannot, however, rule out tunneling and ZPE effects, which
are not included.

Now let us consider the effect of self-trapping on the
local strain of the niobium lattice. We have used the first
peak of the H-Nb radial distribution function as a measure
of the amplitude of the local strain field (H-Nb distance) in
the immediate vicinity of the interstitial. In the hydrogen-
free niobium lattice, the distance from the interstitial
tetrahedral site to the four closest Nb atoms was deter-
mined to be 1.86 Å at 0 K. By plotting (Fig. 4) this distance
as a function of temperature we can follow the changes
in the amplitude of the local strain field. The results dis-
played in Fig. 4 are obtained from simulations performed
at a constant volume. Ignoring the thermal expansion eased
the calculations and the extraction of the hydrogen induces
changes in the atomic distances. This approach is moti-
vated by the negligible influence of the volume on the
difference in the H-Nb distances at different residence
times, which was verified by 900 and 1500 K simulations
with different volumes of the cell. As seen in the figure,
the average distance exhibits a close to linear decrease
with increasing temperature to approximately 1000 K
where it levels out. It is also worth noting that the distance
does not reach 1.86 Å, which is the distance in the
hydrogen-free lattice. Thus, a local strain field is always

present, while its amplitude and distribution depends on
the temperature.
In 1986 Dosch and Peisl [21,22] measured the hydrogen

diffusion in Nb from room temperature to 573 K using
quasielastic neutron scattering. They saw an oscillatory
dependence of the structure factor on the momentum trans-
fer, which was interpreted assuming the existence of a
so-called mobile state of hydrogen. This mobile state cor-
responds to a nonequilibrium state where the local distor-
tion does not have time to fully relax over a sequence of
rapid jumps (10–100 fs) between neighboring tetrahedral
sites. Wahnström and Li supported this idea in 1993 using
classical molecular dynamics at 450 and 580 K [23]. Dosch
et al. [24] argued that the nonequilibrium state could be the
reason for the cubic symmetry of the local strain field
measured experimentally, even though the tetrahedral site
itself has a tetragonal symmetry. However, in 1994 Elsässer
et al. [25] showed by electronic structure calculations that a
hydrogen at a tetrahedral site produces an isotropic strain
field. Static forces are thus sufficient to reproduce the cubic
symmetry of the strain field and consequently there is no
need to invoke a dynamic force field. We have confirmed
this finding from our 0 K calculations.
Wahnström and Li [23] found from their analysis of the

jump angles at 450 K that the proportion of jumps back to
the last occupied T site is much larger in comparison to
what would be expected, which we have confirmed. The
overrepresentation of jumps back to the last occupied T site
can be understood from the difference in energy levels as
shown in Fig. 1. Immediately after the jump between
T sites, the polaron is in an excited state. The deexcitation
has two branches, return to the initial T site, or a translation
of the local strain field. The first excitation of the polaron,
E0, has an excitation energy in the range 0<E0

1 < EI, see

Fig. 1. A double jump corresponds to a higher excitation,
with an energy in the range 0<E0

2 <EIIb, depending on

the direction and the time required for the double jump.
The probability of higher excitations increases with in-
creasing temperature. The upper limit for the excitation
of the polaron is defined by the self-trapping energy of the
hydrogen. The internal excitation of the polaron results in
an increased activation energy, which is consistent with
experiments as well as our findings.
The increase of the hopping rate with increasing tem-

perature, combined with the temperature independent re-
laxation time of the lattice, results in an unbinding of the
hydrogen strain field pair. As a consequence, the amplitude
of the local lattice displacement must depend on �. To
prove this point, we plot, in Fig. 4, the H-Nb distance
obtained for � � h�i, as a function of temperature. The
choice of time scale is somewhat arbitrary, but serves
the purpose of separating the long and short residence
times. As seen from Fig. 4, the mean displacement, and
the displacement developed around the fastest moving
hydrogen, is the same at and below room temperature.
Thus, at these temperatures, the proton and the strain field

FIG. 4 (color online). The average distance between hydrogen
and the nearest neighbor Nb as a function of temperature (red
circles). The probability of residence, Pð�Þ, as a function of
residence time (�), at 500 K, is illustrated as an inset. The green
squares show the H-Nb distance for residence times smaller than
the average residence time, h�i.
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are fully coupled and diffuse as a unity (polaron diffusion).
Above room temperature, we can see a difference in the
strain field amplitude depending on whether the protons
have long or short residence times.

Above 1500 K the change in displacement with tem-
perature is weak, which we interpret as the limit of the
unbinding between the proton and the strain field. There-
fore, this temperature serves as a natural dividing line
between regions II and III in Fig. 3. A distinct difference
in the activation energies is seen between these two re-
gions, 0.151(4) eV in region II and 0.176(5) eV in
region III. We note that a partial self-trapped state is still
found at the highest temperatures, as the displacement is
not the same for all �. Thus, the unbinding of the polaron is
not complete, even at the highest temperatures. We did not
detect any stress dependence on the proton residence time,
from an analysis of the cell stress. This implies that even
though the local strain field around the proton diminishes,
the global strain field does not; i.e., there must be a strain
field trail following the diffusing hydrogen.

From the H-Nb radial distribution it was clear that the
probability of self-trapping decreases rapidly with increas-
ing temperature. The same effect can be observed by
looking at the hydrogen jump probability. As seen in
Fig. 5, the residence times become shorter as the tempera-
ture is increased, for the same probability of executing a
successful jump. Or conversely, fast moving hydrogen
atoms are more likely to execute successful jumps as the
temperature is increased. This is just another way of saying
that the probability for a hydrogen atom to become self-
trapped decreases with increasing temperature.

In conclusion, we have demonstrated a temperature
dependent unbinding of the proton and its local strain field.
At elevated temperatures this effect results in a strain field
trail, reflecting the diffusion trace of the interstitial.

When reinterpreting the experimental results
[20–22,24], on the basis of our findings, the importance
of the relaxation time of the lattice on the hydrogen diffu-
sion becomes apparent. Internal excitations within the

polaron are a consequence of the short time constants of
the dynamics of the light interstitial, as compared to
the relaxation time of the lattice. This will influence the
H-H interaction and is expected to be of great importance
for understanding the collective dynamic behavior, such as
order-disorder transitions, in all transition metal-hydrogen
systems.
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