PRL 105, 184501 (2010)

PHYSICAL REVIEW LETTERS

week ending
29 OCTOBER 2010

Spectral Theory of the Turbulent Mean-Velocity Profile

Gustavo Gioia,' Nicholas Guttenberg,” Nigel Goldenfeld,” and Pinaki Chakraborty®
"Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
*Department of Physics, University of Illinois, Urbana, Illinois 61801, USA

3Department of Geology, University of Illinois, Urbana, Illinois 61801, USA
(Received 25 August 2009; published 25 October 2010)

It has long been surmised that the mean-velocity profile (MVP) of pipe flows is closely related to the
spectrum of turbulent energy. Here we perform a spectral analysis to identify the eddies that dominate the
production of shear stress via momentum transfer. This analysis allows us to express the MVP as a functional
of the spectrum. Each part of the MVP relates to a specific spectral range: the buffer layer to the dissipative
range, the log layer to the inertial range, and the wake to the energetic range. The parameters of the spectrum
set the thickness of the viscous layer, the amplitude of the buffer layer, and the amplitude of the wake.
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Although most flows in nature and technology are tur-
bulent flows over confining walls, these latter flows have
remained amongst the less understood phenomena of clas-
sical physics [1]. Take the simplest example (an example
whose applications are legion): the turbulent flow in a long
smooth-walled pipe with a cross section of radius R. If the
flux be kept steady, the velocity of the flow at a distance y
from the wall of the pipe may be averaged over a long
period of time to obtain a local mean velocity u. The
function u(y) is called the mean-velocity profile (MVP),
and there is a MVP for each value of the Reynolds number,
Re = UR/v, where U is the mean velocity of the flow (i.e.,
the flux divided by the cross-sectional area of the pipe) and
v is the kinematic viscosity of the fluid [2,3]. (Re quantifies
the relative importance of inertia and viscosity in the flow;
the higher the Re, the more turbulent the flow.) MVPs were
first measured 80 years ago [4] and have recently been the
subject of exacting experiments [5] and numerous compu-
tational simulations [6,7]. Theory has meanwhile lagged
well behind experiments and simulations.

The first theory came soon after the earliest experiments.
Ludwig Prandtl showed that when plotted in terms of the
dimensionless “wall variables” @ and y, the MVPs for
different values of Re collapse into a single MVP close
to the wall (Fig. 1) [3]. The wall variables are defined by
i = u/\Jty/pand § = y(yf7y/p)/ v, where p is the density
of the fluid and 7 is the shear stress—or shear force per
unit area—that develops between the flow and the wall of
the pipe. Prandtl also showed that over most of its domain
ii(y) follows the “log law of the wall,”

i(5) = L 1nj + B, 1)
K

where « (the “Karman constant’) and B are dimensionless
constants which can be estimated by fitting experimental
data [3].

Numerous variants of the log law of the wall have been
proposed, and recently it has been argued that the MVPs
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for different values of Re might not be logarithmic after all.
Instead, they might be power laws with Re-dependent
exponents and a logarithmic envelope [8]. Yet the original
theory of Prandtl and this recent theory of Barenblatt have
been predicated on dimensional analysis and similarity
assumptions (they differ in the similarity assumptions
[8]), without reference to the spectrum. As a result, these
theories cannot be used to relate, for example, the log law
of the wall or the constants thereof to the spectrum. Our
aim here is to find the missing link between the MVP and
the spectrum.
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FIG. 1. Log-linear plots of the MVPs in the “wall variables™ i
and y for four values of Re. The symbols are from experiments
[5] and the solid lines from simulations [7]. Each MVP extends
from the wall (which corresponds always to j = 0) to the
centerline of the pipe (which corresponds to a value of § that
depends on Re); the MVPs collapse on a single MVP close to the
wall. Focusing on any one MVP, we can parse the horizontal axis
from left to right to find the “viscous layer”” (where the MVP has
a positive curvature), the “‘buffer layer” (where the MVP has a
noticeable negative curvature), the “log layer”” [where the MVP
follows the log law of the wall (1)], and a “wake” (where the
MVP overshoots the log law of the wall close to the centerline of
the pipe) [18].
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We adopt the imagery of “turbulent eddies” [9,10] and
use the spectrum of turbulent energy [2,11], E(k) =3 X
(k.&)**k=>3 ¢ (nk)c,(Rk), to determine the velocity of

2 00

the eddies of size s, vy, in the form vi = [ E(k)dk.
Here k is the wave number, «, is a dimensionless param-
eter, & is the turbulent power per unit mass [12], n =
34 e~1/4 is the viscous length scale [2], R is the largest
length scale in the flow, 2 (k,&)*?k >/ is the Kolmogorov
spectrum [13,14], and ¢; and ¢, are dimensionless
correction functions—the dissipative-range correction
and the energetic-range correction, respectively. For the
dissipative-range correction we adopt the usual form,
cq(mk) = exp(—B,mk), and for the energetic-range cor-
rection the form proposed by Karman, c,(Rk) = (1+
(B,/Rk)?)~17/ where B, and B, are nonnegative dimen-
sionless parameters [11]. Note for future reference that
as v2 = Vs E(k)dk and E(k) = 0 for all k, the velocity
of an eddy increases with the size of the eddy.

By introducing the dimensionless variable ¢ = sk, we
can write v, = (k,es)'/3I, where I = I(n/s,s/R) =
F T E7 P exp(=€Bam/s)(1 + (Bes/R)*/€%)717/0dé. For
s in the inertial range (7 < s <K R), I = 1, and therefore
v, = (k,e5)"/? [2,10,11], which is the well-known expres-
sion for the velocity of an eddy of the inertial range (i.e., an
eddy of size n < s < R). The same expression may be
independently derived from Kolmogérov’s four-fifth law,
which also gives the convenient estimate «, = 4/5 [15].
For s outside of the inertial range, / < 1. It follows that an
eddy of the dissipative range or the energetic range (i.e., an
eddy of size s = n or s = R, respectively) has a velocity
v, < (k.es)*—i.e., the eddy is slower than an imaginary
eddy of the same size in the inertial range.

We now seek to derive an expression for the turbulent shear
stress 7, in a smooth-walled pipe of radius R. Let us call W,
the wetted surface at a distance y from the wall (Fig. 2). The
turbulent shear stress that acts on W, is produced by eddies
that straddle W, and transfer momentum across W,, (Fig. 2).
Thus an eddy of size s carries fluid of high horizontal mo-
mentum per unit volume [about pu(y + s)] downward across
W, and fluid of low horizontal momentum per unit volume
[about pu(y — s)] upwards across W,, and the eddy spans
a momentum contrast p(u(y + s) — u(y — 5)) = 2psu'(y)
[16], where u’ = du/dy. The rate of momentum transfer
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FIG. 2. Schematic for the derivation of the turbulent shear stress.
u(y + s) is the mean velocity at a distance y + s from the wall;
u(y — s) is the mean velocity at a distance y — s from the wall.

across W, is set by the velocity normal to Wy, i.e., the velocity
of the eddy, v,. Therefore, the turbulent shear stress produced
by an eddy of size s scales as psu'(y)v, (the product of the
momentum contrast times the rate of momentum transfer).
In order to identify the dominant eddies that straddle
W, recall that v, (and therefore sv,) increases with s. It
follows that the larger the eddy the larger the turbulent
shear stress produced by the eddy. Nonetheless, eddies
much larger than y do not properly straddle W, and can
provide only a negligible velocity normal to Wy, and there-
fore a negligible turbulent shear stress. (This observation is
purely a matter of geometry.) We conclude that the domi-
nant eddies that straddle W), are the eddies of size s = y.
The turbulent shear stress at a distance y from the wall is
thus given by the expression, 7, = k,pyv,u'(y), where «,
is a dimensionless proportionality constant. From 7, =
K pyvyu'(y), vy, = (k,ey)'/3VI, and &€ = 7,u'/p (the en-
ergy equation [11]), we can eliminate v, and & to obtain

7, = K2 plPy2u (y)?, 2)

where k = (k,k3)1/4.

Now, the total shear stress at a distance y from the wall is
70(1 — y/R), where 7, is the shear stress at the wall [11].
To obtain an equation for the MVP, we substitute (2) in the
equation, 7, + pru’ = 7y(1 — y/R), where pvu’ is the vis-
cous shear stress, and rewrite the result in terms the Reynolds
number Re = UR/v, the friction factor f = 7,/pU?, and
the dimensionless variables § = y/R and 4 = u/U:

RPAE? +Re — f1=5) =0, ()

where @i/ = dii/dy and I = I(n/y, $). To obtain an equa-
tion for 7/y, we substitute the energy equation, & =
(fU*(1 — y/R) — vu')u’, into p = v3/*¢~1/4, and change
variables to y and ii:

n/y =Re V2(fRed'(1 = §) —a?) V57 @)

If for a fixed Re we let § — 0, then 1/y — oo [from (4)],
I — I(o0,$) = 0, and (3) simplifies to i’ = fRe, which is
the law of the viscous layer. If for a fixed } < 1 we letRe —
oo, then /y — 0 [from (4)], y is in the inertial range (where
I = 1), and (3) simplifies to &’ = /f/«$, which we recog-
nize as the log law of the wall with a Karman constant k =
(k,k3)"/*. Note that the log law of the wall prevails where y
is in the inertial range; it follows that the dominant eddies in
the log layer are eddies of the inertial range. The presence of
K, and k. in the expression for « reminds us of the under-
pinnings of the theory: the spectrum and the momentum
transfer, respectively. From «, = 4/5 (the estimate from
Kolmogoérov’s four-fifth law [15,17]) and « = 0.42 (the
experimental value [5]), we can estimate «, = 0.34.

The law of the viscous layer and the log law of the wall
may be made invariant to changes in Re and f, in the form
i'=1 and @ = 1/kjy, by choosing 7= Re./fy =
Re/fy/R and ii = i/\/f = u/U./f, which we recognize
as the wall variables. In the wall variables (3) becomes
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KPR 4 i — (1 — 5/Reyf) =0, (5)
where I = I(n/y, §/Re /f), and (4) becomes

n/y = (@(1 — §/Rey[f) — i) ~1/457. (6)

From these equations it is apparent that in the wall varia-
bles there is a single MVP except close to the centerline of
the pipe, where j = Re+/f (or y = R).

‘We now ascertain under what conditions (5) and (6) are
compatible with a nonvanishing turbulent shear stress close
to the wall. Suppose that at a point § << Re./f (or y < R)
we have I = I(n/y,0) >0, and therefore 7, > 0. Then,
we can eliminate i’ from (5) and (6) to obtain

o ((n/y)“/3 + B3Iy, 0))’/2
By (n/y, 00 )

Plots of y vs n/y [Fig. 3(a)] reveal that for any given x and
B, there exists a minimum value of j, to be denoted ¥,,.
Therefore, for y < §J, it must be that 7 =0, 7, = 0, and
i’ = 1. As this latter equation is the law of the viscous
layer, we identify ¥, with the thickness of the viscous layer
[18]. Note that y, depends on the dissipative-range
parameter B, [Fig. 3(b)], and that for 8; = O there is no
viscous layer (¥, = 0).

We are now ready to compute the MVP. For simplicity
we use the Blasius relation for the friction factor, f =
0.033Re™!'/* [5]. For the spectral parameters 8, and S3,
we use the values, B8, = 7 and B, = 8. The thickness of
the viscous layer is set by 8, and «; for 8, = 7 and k =
0.42, y,, = 4.17 [Fig. 3(b)]. Therefore, for § < 4.17 we can
write ii(¥) = ¥, and for § > 4.17 we must compute i(¥) by
integrating (5) with boundary condition ii(4.17) = 4.17. The
results are shown in Fig. 4(a). Given the spectrum, the theory
yields the entire MVP with all of its distinctive features. The
specific connection between each one of these features and
the spectrum will become apparent in what follows.

To elucidate the effect of the energetic-range correction,
we recompute the MVP using 8, = 10 (a larger value than
before) and B, = 0 (the smallest possible value, which
corresponds to having no energetic-range correction). The
results [Fig. 4(b)] indicate that the energetic-range correc-
tion steepens the MVP in the wake. The dominant eddies in
the wake must therefore be eddies of the energetic range.
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FIG. 3. (a) Plots of (7) for k = 0.42 and three values of S3,.
(b) Plots of the thickness of the viscous layer 7, as a function of
B, for three values of «.

These eddies are slowed down by the energetic-range cor-
rection (and made less adept at transferring momentum).
This effect explains the steepening of the MVP in the wake.

We have seen that the dissipative-range correction sets
the thickness of the viscous layer [Fig. 3(b)]. To understand
further the effects of the dissipative-range correction, we
recompute the MVP using a few values of B,, including
Bas = 0 (the smallest possible value, which corresponds
to having no dissipative-range correction). The results
[Fig. 4(c)] indicate that the dissipative-range correction
causes the buffer layer to form, so that for 8, = O there
is no buffer layer. (The buffer layer is the part of the MVP
where the MVP has a negative curvature [18].) The domi-
nant eddies in the buffer layer must therefore be eddies of
the dissipative range. These eddies are slowed down by the
dissipative-range correction; the larger the eddies, the less
they are slowed down, and the more adept they remain at
transferring momentum. As the size of the dominant eddies
increases with the distance to the wall, the MVP becomes
less steep as we traverse the buffer layer from the outer
edge of the viscous layer (where the eddies are fully
viscous) to the inner edge of the log layer (where the eddies
are fully inertial). This effect explains the negative curva-
ture of the MVP in the buffer layer.

It is apparent from Fig. 4(c) that the constant B of the log
law of the wall is set by ,. A plot of B as a function of 3,
is shown in Fig. 4(d).

Interestingly, the MVP for 8; = 0 can be obtained ana-
lytically everywhere save the wake. In fact, for 8, = 0
and ¥ < Re./f (or y < R), I =1 and (5) simplifies to
K2§%i"> + ii' — 1 = 0, which with i#(0) = 0 yields

o

o

FIG. 4. (a) The MVPs computed using « = 0.42, B8, = 7, and
B = 8. The thick dot indicates the point of contact between the
viscous layer and the buffer layer. (b) The same as in (a) but
using B, = 0 (dashed lines) and B, = 10 (solid lines). Inset:
detail of the wakes. (c) The same as in (a) but using 8, =0
(bottom), 2, 6, and 12 (top). Inset: A plot of (8) for k = 0.42.
(d) A plot of B as a function 8, for k = 0.42.

184501-3



PRL 105, 184501 (2010)

PHYSICAL REVIEW LETTERS

week ending
29 OCTOBER 2010

arcsinh(2«7) N 1 — 1+ &%

K 2K%§

= ®)
This is what the MVP would be away from the wake if the
Kolmogorov spectrum were valid even for vanishingly small
eddies [inset of Fig. 4(c)]. For 0 < § < Re /f (or 0 <
y < R), (8) simplifies asymptotically to & ~ (1/«)Injy +
B, with B = (=1 + In4k)/k. Thus, for 8; =0 and k =
0.42, B = —1.15 in accord with Fig. 4(d).

We have established the long-surmised link [2] between
the mean-velocity profile and the turbulent spectrum. To test
our results, we have shown that the usual model of the
spectrum (a power-law inertial range with corrections for
the dissipative range and the energetic range) is in itself
sufficient to compute with no additional assumptions a
mean-velocity profile complete with viscous layer, buffer
layer, log layer, and wake [19]. The thickness of the viscous
layer, the two constants of the log law of the wall, and the
amplitude of the wake are all set by the dimensionless
momentum-transfer constant «, and the usual spectral
parameters—the parameter B3, of the energetic-range cor-
rection and the parameter B, of the dissipative-range cor-
rection. The relation between a specific feature of the MVP
and the spectral parameters reminds us of the underlying
physics. Thus, for example, the Karman constant is inde-
pendent of both 8, and 3,, and is therefore unaffected by
the energetic-range and dissipative-range corrections, with
the implication that the eddies that dominate the momentum
transfer in the log layer are eddies of the inertial range.
More broadly, the close relation between the mean-velocity
profile and the spectrum indicates that in turbulence, as in
continuous phase transitions, global variables are governed
by the statistics of the fluctuations [20].
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