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Self-similar solutions of the coherent diffusion equation are derived and measured. The set of real

similarity solutions is generalized by the introduction of a nonuniform phase, based on the elegant

Gaussian modes of optical diffraction. In a light-storage experiment, the complex solutions are imprinted

on a gas of diffusing atoms, and the self-similar evolution of both their amplitude and phase pattern is

demonstrated. An algebraic decay depending on the mode order is measured. Notably, as opposed to the

regular diffusion spreading, a subset of the solutions exhibits a self-similar contraction.
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The diffusion of a vector field delineated in the Torrey-
Bloch formulation [1] dictates the coherent dynamics of
various spin ensembles, including the nuclear magnetiza-
tion in NMR [1,2], spin-polarized alkalis in vapor [3,4],
and electronic or exciton spins in spintronics systems,
namely, metals, ferromagnets, and semiconductors [5–8].
In their most commonly used form, the Torrey-Bloch
equations are reduced into a single diffusion equation,

@

@t
c ðr; tÞ ¼ Dr2c ðr; tÞ � �c ðr; tÞ; (1)

where D is the diffusion constant and � ¼ 1=T2 is the
homogenous decay rate. The field c is complex valued
when the dynamics of the (transverse) spin coherence is
considered [1], or real-valued for a (longitudinal) spin-
population dynamics [9]. In the former, phase diffusion is
of major importance. Alternatively, light-matter excita-
tions in these media, such as dark-state polaritons and
exciton polaritons, exhibit coherent diffusion in the form
of Eq. (1), due to the ‘‘matter-part’’ contribution to their
dispersion relation [10]. In fact, vorticity [11], atomic
(nonspin) coherence [4,12], and even temperature [13]
are all described by Eq. (1) when subjected to diffusion.

In this Letter, we study the self-similarity properties of
coherent diffusion in one or two dimensions. Self-
similarity is generally associated with the long-time be-
havior of dynamic processes [14]. In most dissipative
systems, similarity solutions decay with a characteristic
rate, indicating the asymptotic evolution of a given initial
condition [15,16]. Similarity solutions emerge also in non-
dissipative systems and often prevail, with a familiar ex-
ample being the family of Gaussian beams in free-space
paraxial optics [17], when the propagation distance is
given the role of time. These beams are broadly referred
to as modes of diffraction, even though they are not sta-
tionary as Bessel beams [18] and not eigenmodes of the
underlying Hamiltonian.

For coherent diffusion, stationary modes were exten-
sively employed [1,9], while self-similar modes would

have been much more natural in unbounded domains.
These modes can also be utilized for the construction and
analysis of stable evolution in coherent systems. Here, we
present the complex self-similar solutions and experimen-
tally follow their dynamics, utilizing direct observation and
spatial mapping techniques unavailable in NMR or spin-
tronics systems. We demonstrate the preservation of both
their shape and phase pattern, as well as their characteristic
decay. Similarly to optical modes, the diffusion modes are
only partially self-similar; their shape is preserved up to
scaling and normalization, while their phase pattern curves
or flattens. A self-similar contraction, resembling focus or
collapse [19], is also demonstrated.
Consider first the time-independent paraxial diffraction,

@E=@z ¼ �ir2
?E=ð2kÞ, for the slowly-varying envelope,

E, of a light field with a wave number k. Two different sets
of polynomial-Gaussian solutions are known for this equa-
tion, namely, the standard and the elegant beams [17]. The
more familiar ‘‘standard’’ modes, e.g., the Hermite
Gaussian (HG) or Laguerre Gaussian (LG), form complete
sets of modes that are self-similar under diffraction. Their
transverse intensity distribution, Iðx; y; zÞ, is maintained
along the propagation direction z, normalized, and scaled
by the beam radius wðzÞ. In contrast, the transverse shape
of the ‘‘elegant’’ solutions is generally not maintained, and
originally they were investigated due to their elegant
mathematical form [20,21].
The elegant HG solution, EHG

n1;n2ðr;w0Þ, with w0 being

the radius at the waist plane z ¼ 0, is written in terms of the
Hermite polynomials of orders n1 and n2 as,

EHG
n1;n2 ¼

E0

kw0

�
kw2

0

2qðz;w0Þ
�
N=2þ1

Hn1ð~xÞHn2ð~yÞe�~x2�~y2 : (2)

Here, qðz;w0Þ ¼ izR þ z is the complex radius, zR ¼
kw2

0=2 is the Rayleigh length, N ¼ n1 þ n2 is the total

mode order, and E0 is a normalization constant. The trans-
verse scaling, appearing in both the polynomial and
the Gaussian terms, depends on z and w0, with

~x ¼ x½ik=2=qðz;w0Þ�1=2 and ~y ¼ y½ik=2=qðz;w0Þ�1=2.
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The beam radius, wðzÞ, and the radius of curvature of the
phase fronts, RðzÞ, are obtained from qðz;w0Þ�1 ¼
RðzÞ�1 � ði2=kÞwðzÞ�2. For the corresponding standard
mode, the complex arguments of the polynomial (~x, ~y)

are replaced by real arguments [
ffiffiffi
2

p
x=wðzÞ, ffiffiffi

2
p

y=wðzÞ].
Thus ‘‘elegant’’ modes with a homogeneous polynomial
are also ‘‘standard,’’ and we denote them as ‘‘common’’
modes.

Suppose that diffusion takes place at the (x, y) plane,
while z is constant. Equation (2), with @E=@z ¼
�ir2

?E=ð2kÞ and ð@=@w0Þz ¼ ikw0ð@=@qÞw0
þ

ð@=@w0Þq, then gives

r2
?E

HG
n1;n2 ¼

2

w0

�
@EHG

n1;n2

@w0

�
z
� 2

w2
0

ðN þ 1ÞEHG
n1;n2 : (3)

Under diffusion, the first term accounts for a change in the
waist radius, and the second term for a uniform decay of
the field. Equation (1) is therefore solved by

c HG;z
n1;n2ðx; y; tÞ ¼ e��tsðtÞ�ðNþ1ÞEHG

n1;n2½r;w0sðtÞ�; (4)

where the diffusion coefficient enters only through the

waist stretching factor, sðtÞ ¼ ð1þ 4Dt=w2
0Þ1=2. Thus the

spatial consequence of diffusion is an effective stretching
of the beam radius at the waist plane, even when the
diffusion occurs far from the waist (z � 0), as illustrated
in Fig. 1. Note that if diffusion is addressed as an
imaginary-time evolution of diffraction, it is readily seen
from the definition of the complex radius qðz;w0Þ that
exchanging the real evolution in z for an imaginary one
corresponds to a real increase in the waist radius. The total

power, PðtÞ ¼ R
dxdyjc HG;z

n1;n2 j2, which is independent of z,
is not preserved under diffusion even when � ¼ 0, due to

an algebraic decay term sðtÞ�ðNþ1Þ. This occurs even for
the lowest Gaussian mode (N ¼ 0) because it is the field,
rather than the intensity, that is diffusing. Higher-order
modes (N > 0) decay faster due to the diffusion of the
nonhomogenous phase pattern, which contains larger gra-
dients for higher N. A similar procedure can be carried out
for an elegant LG solution, ELG

p;m, of radial order p and

orbital order m, yielding Eq. (4) for the diffusing field

c LG;z
p;m ðx; y; tÞ, with N ¼ pþm.
At the waist, all arguments in Eq. (2) are real, and the

HG solutions c HG;z¼0
n1;n2 are identified with the expanding

similarity solutions of real-valued diffusion [15], occur-
ring, e.g., for the vorticity field of a viscous fluid [11,16].
The real solutions are alternatively derived from a given
self-similar solution with a single real scaling {c ðr; tÞ ¼
hðtÞf½r=wðtÞ�g, by taking any of its spatial derivatives

{@nc =@xn ¼ hðtÞfðnÞ½r=wðtÞ�=wðtÞng. Indeed, the deriva-
tives of the lowest-order Gaussian beam constitute the
elegant modes, with the derivative order corresponding to
the total mode order N, and with the possible general-
ization for unified Hermite-Laguerre-Gaussian modes

[22,23]. Consequently, c HG;z¼0
n1;n2 or c LG;z¼0

p;m , and all linear

combinations of them with the same total order, are self-
similar, sharing the same stretching and the same algebraic
decay. Alternatively, any complex ‘‘image’’ in the (x, y)

plane can be expanded in terms of c HG;z¼0
n1;n2 or c LG;z¼0

p;m

using their biorthogonal pairs [24], its diffusion can be
described in terms of the modes dynamics, and asymptoti-
cally the lowest-order solution prevails [25].
To validate the above predictions, we perform experi-

ments with thermal alkali atoms confined in a vapor cell
with a buffer gas. This system attracted considerable recent
study, exhibiting spectral fringes, narrowing, and coherent
recurrence [12,26,27], slow-light manipulation [28], and
spatial diffusion [4,29–31]. Using the technique of light
storage and retrieval [32], any arbitrary initial condition
can be imprinted on the diffusing atoms, and the subsequent
dynamics can be observed [4]. A resonant laser beam with
the desired opticalmode is sent into the cell, and its complex
field envelope is mapped onto the atomic coherence field by
shutting down an auxiliary control beam. The coherence
field, c , is allowed to evolve for a controlled duration �, in
which the alkali diffusion through the buffer gas takes place,
as well as a homogenous decoherence � (e.g., due to spin-
exchange relaxation [33]). The coherence is then converted
back to light, which is imaged onto a camera. The setup is
similar to that described in Ref. [29], where the topological
stability of the stored vortex ELG

0;1 was confirmed.

The experiment was carried out with the fundamental

Gaussian mode EðHG=LGÞ
0;0 , the LG modes ELG

0;1 and E
LG
0;2 , and

the HG mode EHG
0;1 . Figure 2(a) presents the retrieved

images, proportional to jc ðx; y; �Þj2 for a storage per-
formed with the cell located at the beam waist (z ¼ 0),
for durations of � ¼ 2, 30, and 60 �s. Evidently, all the
modes expand but maintain their shape through the diffu-
sion process. As a complementary test, we have also passed
the retrieved beams through a binary grating mask with a
fork dislocation, which adds a phase function m� in its
mth diffraction order [34]. After the mask, as shown in
Fig. 2(b), the retrieved vortex mode ELG

0;1 (m ¼ 1) produces

a Gaussian (m ¼ 0) and a higher-order vortex (m ¼ 2)
in the �1 and þ1 diffraction orders, confirming the

FIG. 1 (color online). The effect of diffusion on Gaussian
beams is an effective expansion of the waist, even if it occurs
away from the waist plane. Therefore far enough from the waist,
the diffusion contracts the transverse shape. Right (color) map:
Phase gradients of the field envelope (black lines are equal phase
contours; white lines are the beam outline). From the viewpoint
of the microscopic atomic motion, the contraction far from the
waist occurs due to destructive interference of atoms diffusing
through the rapidly oscillating phase pattern (red colored).
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maintenance of the phase pattern. Figure 3(a) presents the
increase in the waist-radii squared versus the storage du-
ration, showing the same linear increase for all curves,
wð�Þ2 � w2

0 ¼ w2
0½sð�Þ2 � 1� ¼ 4D�. The cross sections

shown in Fig. 3(b), scaled according to sð�Þ and normal-
ized, clearly demonstrate the self-similarity. The algebraic

decay of the diffusing modes, sðtÞ�ðNþ1Þ, is measured by
integrating over the intensity of the retrieved images
[Fig. 4]. All modes exhibit a significant algebraic decay
on top of the homogenous decay, with the higher-order
modes decaying faster, showing an excellent quantitative
agreement with the predictions of Eq. (4).

We now discuss the diffusion of the elegant modes at a
given plane outside the waist plane, z � 0. In optics, an
expansion of the waist results in an increase of the beam’s
transverse size for jzj< zR and in a decrease for jzj> zR
[Fig. 1]. It follows, perhaps counterintuitively, that the ini-
tial effect of diffusion occurring at jzj> zR is a contraction.

Locally, it is the consequence of a destructive interference
in regions of the beam where the phase pattern rapidly
oscillates [Fig. 1, right]. The contraction versus diffusion
time, Cð�Þ ¼ wð�Þ=wð0Þ, is given by Cð�Þ2 ¼ ½sðtÞ4 þ
�2�=½sðtÞ2ð1þ �2Þ�, where � ¼ z=zR specifies the initial
distance from the waist. As the waist radius increases

FIG. 2 (color online). (a) Self-similar diffusion of the complex
field of atomic coherence in a light-storage experiment. Top to
bottom: the basic Gaussian mode, Laguerre-Gaussian modes of
radial order p ¼ 0 and orbital orders m ¼ 1, 2, and a Hermite-
Gaussian mode of Cartesian orders (0, 1). All images are 1:6�
1:6 mm. (b) Images after storage, diffracted by a binary grating
mask with a fork dislocation, for confirming the conservation of
phase. The retrieved Gaussian mode (top) yields the two m ¼
�1 vortex modes, while the retrieved vortex m ¼ þ1 (bottom)
produces an m ¼ 0 and an m ¼ þ2 modes.

FIG. 3 (color online). (a) Linear growth of w2 with respect to
the time duration of diffusion. The line is w2 � w2

0 ¼ 4D�, with
D and w0 fit parameters (w0 ¼ 0:4–0:55 mm, varying for the
different modes, and D ¼ 10:8 cm2=s). (b) Self-similarity: cross
sections (Cartesian or radially weighted) at different times are
congruent when the coordinate is scaled with sð�Þ�1=2. The solid
lines are the exact elegant HG and LG modes.

FIG. 4 (color online). Decay of the total power in the retrieved
images Pð�Þ ¼ R

dxdyjc ð�Þj2. In the inset, P� compensates for

the algebraic decay [sð�Þ known from Fig. 3] and collapses onto
a single straight line in the semilog scale, yielding the homoge-
nous decay rate 2� ¼ ð68 �sÞ�1. In the main graph, the dashed
line is e�2�� and the solid lines are e�2��sð�Þ�2ðNþ1Þ, demon-
strating the faster decay of the higher-order modes. The differ-
ence between the LG0;1 and the HG0;1, both having N ¼ 1, is due
to slightly different initial waist radii (w0).
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during diffusion, zRð�Þ increases and eventually crosses the
observed plane (which z coordinate is constant). At this
time, the maximal contraction C2

min ¼ 2�=ð1þ �2Þ is ob-
tained, and thenceforth the beam expands indefinitely.

Elegant modes, as opposed to the standard modes, are
generally not self-similar under diffraction, and the shape
of the beam depends on z=zR. Hence, even when z is held
constant, the increase of zR during diffusion changes the
transverse shape and breaks its self-similarity. However,
the aforementioned ‘‘common’’ modes, which are simul-
taneously elegant and standard, are self-similar under dif-
fraction and thus also self-similar under diffusion even for
z � 0. The HG modes of orders 0 and 1 [17] and all LG
modes with p ¼ 0 (the vortex modes) are such common
modes. Far from the waist, at z > zR, these modes contract
self-similarly. Figure 5 presents the experimental result for
a diffusing ELG

0;1 mode focused at a distance 8zR before the

cell (� ¼ 8), yielding C2
min � 1=4.

Finally, we point out an intriguing instability phenome-
non noticeable in Fig. 2(a) for the ELG

0;2 mode. During

diffusion, the m ¼ 2 vortex breaks down into two vortices,
probably of m ¼ 1. A decay of high-order vortices into
lower-order ones has been seen also in optics, quantum
fluids, and Bose-Einstein condensates. Here, several can-
didate mechanisms may be responsible for the imperfec-
tion [11,34], which evidently conserves the cross section of
the original vortex [Fig. 3(b)].

In conclusion, the self-similar evolution of coherent
diffusion can be inferred from the expansion of elegant
optical modes at their waist, which may also lead to a self-
similar contraction. An algebraic decay of the power occurs
even for the lowest-order mode due to field interference

effects. The elegant and standardmodes form complete sets
of similarity solutions for diffusion and diffraction, respec-
tively, while the simultaneous process of diffusion and
diffraction, as occurring for light-matter polaritons [28],
is yet to be explored. Moreover, the self-similar modes can
be readily applied in NMR and spintronics systems gov-
erned by transverse spin dynamics, while extended vector
solutions should be obtained when the dynamics of the full
vector field is of significance.
We gratefully acknowledge discussions with A. Ron.
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slow-light propagation. The original mode has a radius of
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stantially faster than in the expansion experiments, and substan-
tial noise is already apparent after 15 �s of storage.
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