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Quantum metrology promises improved sensitivity in parameter estimation over classical procedures.

However, there is a debate over the question of how the sensitivity scales with the resources and the

number of queries that are used in estimation procedures. Here, we reconcile the physical definition of the

relevant resources used in parameter estimation with the information-theoretical scaling in terms of the

query complexity of a quantum network. This leads to a completely general optimality proof of the

Heisenberg limit for quantum metrology. We give an example of how our proof resolves paradoxes that

suggest sensitivities beyond the Heisenberg limit, and we show that the Heisenberg limit is an

information-theoretic interpretation of the Margolus-Levitin bound, rather than Heisenberg’s uncertainty

relation.
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Parameter estimation is a fundamental pillar of science
and technology. Caves [1] showed that quantum mechani-
cal systems can, in principle, produce greater sensitivity
over classical methods, and many quantum parameter es-
timation protocols have been proposed since [2]. The field
of quantum metrology started with the work of Helstrom
[3,4], who derived the minimum value for the mean square
error in a parameter in terms of the density matrix of the
quantum system and a measurement procedure. This was a
generalization of a known result in the classical parameter
estimation, called the Cramér-Rao bound. Braunstein
and Caves [5] showed how this bound can be formulated
for the most general state preparation and measurement
procedures.

The quantum Cramér-Rao bound is typically formulated
in terms of the Fisher information. One of the central
questions in quantum metrology is how the Fisher infor-
mation scales with the physical resources used in the
measurement procedure. We usually consider two scaling
regimes: First, in the standard quantum limit (SQL) [6] or
shot-noise limit the Fisher information is constant, and the
error scales with the inverse square root of the number of
times T we make a measurement. Second, in the
Heisenberg limit [7] the error is bounded by the inverse
of the physical resources. Typically, these are expressed in
terms of the size N of the probe system, e.g., (average)
photon number. However, it has been clearly demonstrated
that this form of the limit is not universally valid. For
example, Beltrán and Luis [8] showed that the use of
classical optical nonlinearities can lead to an error with

average photon number scaling N�3=2. Boixo et al. [9]
devised a parameter estimation procedure that sees
the error scale with N�k with k 2 N, and Roy and
Braunstein [10] constructed a procedure that achieves an
error that scales with 2�N . The central question is then,
what is the real fundamental Heisenberg limit for quantum

metrology? We could redefine this limit accordingly to
scale as 2�N , but in practice this bound will never be tight.
In this Letter, we give a natural definition of the relevant

physical resources for quantum metrology based on the
general description of a parameter estimation procedure,
and we prove the fundamental bound on the mean squared
error based on this resource count. We will show that the
resource count is proportional to the size of the probe
system only if the interaction between the object and
the probe is nonentangling over the systems constituting
the probe. First, we study the query complexity of quantum
metrology networks, which will lead to a resource count
given by the expectation value of the generator of trans-
lations in the parameter ’. Second, we prove that the mean
error in ’ is bounded by the inverse of this resource count.
We argue that this is the fundamental Heisenberg limit for
quantum metrology. Furthermore, we show that it is a form
of the Margolus-Levitin bound, as opposed to Heisenberg’s
uncertainty relation. Finally, we illustrate how this general
principle can resolve paradoxical situations in which the
Heisenberg limit seems to be surpassed.
The most general parameter estimation procedure is

shown in Fig. 1(a). Consider a probe system prepared in
an initial quantum state �ð0Þ that is evolved to a state �ð’Þ
by Uð’Þ ¼ expð�i’H Þ. This is a unitary evolution
when we include the relevant environment in our descrip-
tion, and it includes feed-forward procedures. The
Hermitian operator H is the generator of translations in
’, the parameter we wish to estimate. The system is
subjected to a generalized measurement M, described by
a positive operator valued measure (POVM) that consists of

elements Êx, where x denotes the measurement outcome.
These can be discrete or continuous (or a mixture of
both). The probability distribution that describes the

measurement data is given by the Born rule pðxj’Þ ¼
Tr½Êx�ð’Þ�, and the maximum amount of information
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about ’ that can be extracted from this measurement is
given by the Fisher information

Fð’Þ ¼
Z

dx
1

pðxj’Þ
�
@pðxj’Þ

@’

�
2
: (1)

This leads to the quantum Cramér-Rao bound [3,5]

�’ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TFð’Þp ; (2)

where ð�’Þ2 is the mean square error in the parameter ’,
and T is the number of times the procedure is repeated. The
SQL is obtained when the Fisher information is a constant

with respect to T, and the Heisenberg limit is obtained
in a single-shot experiment (T ¼ 1) when the Fisher
information scales quadratically with the resource count.
The SQL and the Heisenberg limit therefore relate to two
fundamentally different quantities, T and F, respectively.
We need to reconcile the meaning of these two limits if we
want to compare them in a meaningful way.

To solve this problem, we can define an unambiguous
resource count for parameter estimation by recognizing
that a quantum parameter estimation protocol can be writ-
ten as a quantum network acting on a set of quantum
systems, with repeated ‘‘black-box’’ couplings of the
network to the system we wish to probe for the parameter
’ [11]. A black box is a function that can be univariate or

multivariate. When the function is multivariate, a query to
the black box must take the form of multiple input parame-
ters. Likewise, when the operator that describes the funda-
mental interaction between the queried system and the
probe is a two-body interaction, then a query can consist
only of precisely two input bodies. The scaling of the error
in ’ is then determined by the query complexity of the
network. The number of queries Q is not always identical
to the number of physical systems N in the network.
In Figs. 1(b)–1(d) we consider three examples. The

quantum network in (b) was analyzed by Giovannetti,
Lloyd, and Maccone [11]. Suppose that each grey box in
Fig. 1 is a unitary gate Ojð’Þ ¼ expð�i’HjÞ, where j ¼
1; . . . ; N denotes the system, andHj is a positive Hermitian

operator. It is convenient to define the generator of the joint
queries as H GLM ¼ P

jHj, because all Hj commute with

each other. The number of queries Q is then equal to the
number of terms in H GLM, or Q ¼ N. In Fig. 1(c) the
black box is bivariate. This is a type of Hamiltonian
considered by Boixo, Flammia, Caves, and Geremia [9],
and takes the form H BFCG ¼ PN

k¼1

P
k
j¼1 Hj �Hk. A

physical query to a black box characterized by Ojk ¼
expð�i’Hj �HkÞ must consist of two systems, labeled j

and k. Since each pair interaction is a single query, the total
number of queries is ðN2Þ. Finally, in Fig. 1(d) we depict the
network corresponding to the protocol by Roy and
Braunstein [10]. The number of terms in the corresponding
generator H RB is given by 2N � 1, and the number of
queries is therefore Q ¼ 2N � 1. The entangling power of
the black-box operation over multiple input systems ac-
counts for the superlinear scaling of Q with N. Only when
H does not have any entangling power across the input are
we guaranteed to have Q ¼ OðNÞ. This is in agreement

with Refs. [9,10], where
ffiffiffiffiffiffiffiffiffiffiffi
Fð’Þp

scales superlinearly in N
but is always linear in Q, as defined here. Since we have a
systematic method for increasing N (and Q) given the
atomic interaction Hj, this uniquely defines the asymptotic

query complexity of the network. Since both T andQ count
the number of queries, this allows us to meaningfully
compare the SQL with the Heisenberg limit.

Given that in Eq. (2)
ffiffiffiffiffiffiffiffiffiffiffi
Fð’Þp

& Q, we have to find a
general procedure that bounds Q, based on the physical
description of the estimation protocol in Fig. 1(a).
Previously, we showed that Q is the number of black-box
terms in H , and a straightforward choice for the resource
count is therefore jhH ij � OðQÞ. An important subtlety
occurs when H corresponds to a proper Hamiltonian.
The origin of the energy scale has no physical meaning,
and the actual value of jhH ij can be changed arbitrarily.
Hence, we must fix the scale such that the ground state has
zero energy (equivalently, we may choose jhH � hminIij,
where hmin is the smallest eigenvalue and I the identity
operator). In most cases, this is an intuitive choice.
For example, it is natural to associate zero energy to the
vacuum state and add the corresponding amount of energy

(a)

(b)     (c)

(d)

Q N 4 Q 1
2 N N 1 6

Q 2N 1 15

P M p xU
0

FIG. 1. (a) General parameter estimation procedure involving
state preparation P, evolution Uð’Þ, and generalized measure-
ment M with outcomes x, which produces a probability distribu-
tion pðxj’Þ. In terms of quantum networks, the evolution can be
written as a number of queries of the parameter’. (b) Example for
N ¼ 4 of the usual situation described by H GLM [the grey box
represents Ojð’Þ]. (c) For H BFCG the number of queries Q does

not always equal the number of systems. (d) ForH RB all possible
subsets of systems perform a single query. The number of queries
scales exponentially with the number of systems.
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for each added photon. Technically, this corresponds to the
normal ordering of the Hamiltonian of the radiation field in
order to remove the infinite vacuum energy. Slightly less
intuitive is that the average energy of N spins in a

Greenberger-Horne-Zeilinger state ðj "i�N þ j #i�NÞ= ffiffiffi
2

p
is no longer taken to be zero, but rather N=2 times the
energy splitting between j "i and j #i.

Other seemingly natural choices are the variance and

the seminorm. For example, if we write H � PQ
j Aj, the

variance is ð�H Þ2 ¼hðPQ
j AjÞ2i�hPQ

j Aji2 ¼
PQ2

j hLji�PQ
j;khAjihAki� cQ2 for some positive number c and posi-

tive operator Lj. This gives �H � OðQÞ, where, e.g., in
Ref. [9] Q ¼ OðN2Þ. Similarly, jhH ij ¼ PQ

j jhAjij �
OðQÞ since all expectation values are positive and finite.
In other words, in terms of the scaling behavior withQ, we
can use either the variance or the expectation value.
However, there are important classes of quantum systems
for which the variance of the energy diverges, such as
systems with a Breit-Wigner (or Lorentzian) spectrum
[12,13]. Similarly, the seminorm does not exist for a large
class of states, such as optical Gaussian states. In these
cases the resource count, and by implication the scaling of
the error, would be ill defined. By contrast, jhH ij always
exists and is always positive. Also, from a physical per-
spective the higher-order moments do not describe
‘‘amounts’’ in the same way as the first moment does,
and they refer instead to the shape of the distribution.
This is a further argument that jhH ij is the natural choice
for the resource count. Sometimes, it is unclear how the
query complexity is defined, for example, when the esti-
mation procedure does not involve repeated applications of
the gates Ojð’Þ, or when an indeterminate number of

identical particles, such as photons, are involved. Never-
theless, the generator H is always well defined in any
estimation procedure, and we can always use its expecta-
tion value to define the relevant resource count.

The resource count in terms of jhH ij is completely
general for all possible quantum networks. For interactions
Uð’Þ where we include feed-forward and arbitrary
unitary gates between queries, we can use an argument
by Giovannetti et al. [11] to show that jhH ij ¼
jhð@Uð’Þ=@’ÞUyð’Þij is unaffected by the intermediate
unitary gates, and the scaling is still determined by Q.

After establishing the appropriate resource count, we
can prove the optimality of the Heisenberg limit in its
most general form. The Fisher information can be related
to a statistical distance s on the probability simplex
spanned by pðxj’Þ. Consider two probability distributions
pðxj’Þ and pðxj’Þ þ dpðxÞ. The infinitesimal statistical
distance between these distributions is given by ds2 ¼R
dx½dpðxj’Þ�2=pðxj’Þ [14,15]. Dividing both sides by

ðd’Þ2 we obtain
�
ds

d’

�
2 ¼

Z
dx

1

pðxj’Þ
�
@pðxj’Þ

@’

�
2 ¼ Fð’Þ; (3)

which relates the Fisher information to the rate of change
of the statistical distance.
Whenwe count the resources that are used in a parameter

estimation procedure, we must make sure that we do not
leave anything out, and this can be guaranteed by including
in our description the environment that the estimation
procedure couples to. This reduces the quantum states to
pure states, whichmeans that we can useWootters’ distance
[15] between quantum states as the statistical distance:

sðc ; �Þ ¼ arccosðjhc j�ijÞ; (4)

where jc i and j�i are two pure states in the larger Hilbert
space, and sðc ; �Þ is the angle between them. The distance
between the probe state �ð0Þ and the evolved state �ð’Þ can
then be represented by the pure states jc ð0Þi and jc ð’Þi,
respectively, and the unitary evolution is given by

jc ð’Þi ¼ expð�i’H Þjc ð0Þi: (5)

Here, we place no restriction on H , other than fixing the
energy scale if necessary. We can place an upper bound on
the derivative of Wootters’ distance by evaluating the dif-
ferential of s in Eq. (4) and using Eq. (5) [16]:

ds

d’
� jhH ij: (6)

Combining this with Eqs. (2) and (3) leads to the Cramér-
Rao bound

ð�’Þ2 � 1

T

�
ds

d’

��2 � 1

TjhH ij2 : (7)

When all resources are used in a single-shot (T ¼ 1) ex-
periment, the error in ’ is bounded by

�’ � 1

jhH ij : (8)

Since jhH ij is the resource count in the parameter estima-
tion procedure, this is the Heisenberg limit. It is always
positive and finite; in the limit where jhH ij ! 0, there are
no resources available to estimate ’, and �’ cannot be
bounded. In general, the bound is not tight. Indeed, only
carefully chosen entangled systems can achieve this bound
[11]. This completes the proof of the optimality of the
Heisenberg limit in the most general case.
In addition to Eqs. (3) and (6), the Fisher information is

also bounded by the variance of H according to Fð’Þ �
4ð�H Þ2 [17]. This leads to a (single-shot) quantum
Cramér-Rao bound

�’ � 1

2�H
: (9)

However, since �H is not a resource count, such as the
average photon number, but rather a variance (or uncer-
tainty), this is not the Heisenberg limit. In fact, it is
Heisenberg’s uncertainty relation for the parameter ’ and
its conjugate operator H . Any parameter estimation pro-
cedure must respect both bounds, and the Heisenberg limit
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in Eq. (8) may not be attained for a particular input state
because the bound in Eq. (9) prevents it from doing so.

The term ‘‘Heisenberg limit’’ was introduced by
Holland and Burnett [7], who referred to the number-phase
uncertainty relation in Heitler’s work [18]. However, as our
optimality proof and the subsequent discussion indicate,
the Heisenberg limit is not an uncertainty relation, since it
relates the uncertainty of the parameter to the first moment
of the conjugate observable H , rather than the second. It
turns out, instead, that the Heisenberg limit is intimately
connected to the Margolus-Levitin bound on the time it
takes for a quantum system to evolve to an orthogonal state
[16,19,20]. To see this, we can formally solve Eq. (6) by
separation of variables, yielding

Z ’

0
d’0 � 1

jhH ij
Z �=2

0
ds ) ’ � �

2

1

jhH ij : (10)

We can therefore identify the Heisenberg limit with the
Margolus-Levitin bound on the speed of dynamical evolu-
tion of quantum systems whenH is the Hamiltonian. The
(generalized) uncertainty relation, on the other hand, can
be identified with the Mandelstam-Tamm bound [16]. Both
limits are completely general (assuming the existence of
�H ) and complement each other.

Finally, we demonstrate that our proof applies to con-
tinuous variable systems as well as discrete systems, by
considering the procedure of Beltrán and Luis [8]. The
construction is as follows: The evolutionOð’Þ is generated
by an optical nonlinearity proportional to the square of
the photon number operator n̂2 acting on a single-mode
coherent state jc ð0Þi ¼ j�i. The evolved state before de-
tection is given by jc ð’Þi ¼ expð�i’n̂2Þj�i, and the

mean square error in ’ is calculated as �’ ’ 1
4 hn̂i�3=2 ¼

1
4 j�j�3, to leading order in the average photon number hn̂i.
Since here the average energy is directly proportional to
the average photon number, this procedure seems to sur-
pass the Heisenberg limit. To resolve this paradox, we note
that the generator of translations in ’ is not the photon
number operator n̂, but rather the higher-order nonlinearity
H ¼ n̂2. The appropriate resource count is therefore
jhH ij ¼ hn̂2i, instead of the average photon number hn̂i.
It is easily verified that to leading order �’ is theoretically
bounded by 1=hn̂2i ¼ 1=j�j4. Hence the parameter estima-
tion procedure does not even attain the Heisenberg limit.

Formally, we can attain the Heisenberg limit in this setup
with the following modification of the input state and the

measurement. Consider the single-mode input state jc 0i ¼
ðj0i þ jNiÞ= ffiffiffi

2
p

, where j0i denotes no photons, and jNi
denotes N photons. The state of the probe before detec-

tion is then given by jc ð’Þi ¼ expð�i’n̂2Þjc ð0Þi ¼
ðj0i þ e�i’N2 jNiÞ= ffiffiffi

2
p

. We define the measurement observ-
able X ¼ j0ihNj þ jNih0j. Hence, for the final state jc ð’Þi
we calculate hXi ¼ hc ’jXjc ’i ¼ cosðN2’Þ and �X ¼
sinðN2’Þ. Using the standard expression for the mean

squared error, we find that �’ ¼ �XjdhXi=d’j�1 ¼
N�2. Since jhH ij ¼ hn̂2i ¼ 1

2N
2, the Heisenberg limit is

attained. This is a formal demonstration that the
Heisenberg limit can be attained according to quantum
mechanics, even though we currently do not know how
to implement it.
In conclusion, we demonstrated that the Heisenberg

limit is optimal for all parameter estimation procedures
in quantum metrology. The correct resource to take into
account is (the expectation value of) the generator of the
translations in the parameter. In the case of most optical
phase estimation protocols, this reduces to the average
photon number. Contrary to the origin of the term
‘‘Heisenberg limit,’’ it is not a generalized uncertainty
relation, but rather an expression of the Margolus-Levitin
bound on the speed of dynamical evolution for quantum
states.
We thank Jonathan Dowling for establishing the etymol-

ogy of the term ‘‘Heisenberg limit,’’ and Sam Braunstein
for valuable comments on the manuscript. This research
was funded by the White Rose Foundation.
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