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We simulate a colloidal particle (radius R) in a cholesteric liquid crystal (pitch p) with tangential order

parameter alignment at the particle surface. The local defect structure evolves from a dipolar pair of surface

defects (boojums) at small R=p to a pair of twisted disclination lines wrapping around the particle at larger

values. On dragging the colloid with small velocity v through the medium along the cholesteric helix axis

(an active microrheology measurement), we find a hydrodynamic drag force that scales linearly with v but

superlinearly withR—in striking violation of Stokes’ law, as generally used to interpret suchmeasurements.
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Understanding the properties of colloidal particles mov-
ing in complex fluids is a challenging goal of soft matter
physics and fluid dynamics. The case of a Newtonian fluid
is very well understood, and it is accurately described by
Stokes’ law [1], which states that the viscous force felt by a
particle moving at a constant speed v is linearly propor-
tional to the solvent viscosity �, to v itself, and to the
particle radius R. This fundamental and elegant result is
exploited routinely in active microrheology, a modern
technique which consists of dragging a particle in a fluid
and measuring the force-velocity relation. From these data,
and the knowledge of the probe size, one can obtain an
estimate of a fluid viscosity (effective microviscosity) [2],

�ðactiveÞ
micro ¼ F

6�vR , which is directly a property of the local

environment. This is often preferable to a bulk rheology
experiment, e.g., when addressing the jamming of dense
suspensions [3].

What happens when a particle, instead, moves in fluid
with broken symmetry? Here, much less is known.
Sedimentation or ‘‘falling ball’’ experiments showed long
ago that the drag force in nematic liquid crystals (in which
molecular alignment is governed by a director field n̂) is
anisotropic, as one might expect for a fluid of spontane-
ously broken rotational symmetry. More recently, passive
microrheology experiments and theories have quantified
the ratio of the viscosities along and perpendicular to the
local director field and found these to differ by about a
factor of 2 [4]. These results were obtained in the linear
regimewhere the Ericksen number Er, quantifying the ratio
between viscous and elastic effects, is small: The particle
moves ‘‘slowly.’’ A series of numerical simulations have
also addressed the case of intermediate to high Er, corre-
sponding to nonlinear (in v) microrheology. It was found
that the ratio between the viscosities becomes much
smaller in this case, and the defect structure changes,
e.g., from a Saturn ring to a dipole [5,6].

Here we consider the hydrodynamics of a colloidal
particle (radius R) inside a cholesteric liquid crystal, which
differs from the nematic by having a helical twist to the
director field with a pitch p. (This additional order breaks

translational as well as rotational symmetry.) We focus on
the case of tangential anchoring in which the director field
at the colloid-fluid interface lies everywhere parallel to the
surface of the particle. We show that the resulting defect
structure depends crucially on the ratio R=p. On increasing
this ratio we observe a crossover from a dipolar configu-
ration, with two defect patches on opposite sides of the
particle, to a twisted set of disclination lines of opposite
chiralities wrapping the colloid.
This crossover could profoundly influence themany-body

self-assembly of colloids within the liquid crystal to form
organized structures [7]; we defer this issue to future work.
Herewe address a much simpler problem that is nonetheless
directly addressable in the laboratory. We model an active
microrheology experiment, in which we drag an isolated
colloid through the liquid crystal, defining two effective
viscosities for motion along and perpendicular to the cho-
lesteric helix. We find that, in contrast to the nematic case,
the ratio between these two effective viscosities, even in
the small Er regime, depends strongly on the size of the
probe. This is because the effective drag on a particlemoving
along the cholesteric helix is superlinear in its size R (with
exponent �1:7), in striking violation of Stokes’ law. This
presents an instructive case inwhichmicrorheology delivers
a probe-size-dependent ‘‘viscosity,’’ essentially unrelated
to any bulk macroscopic value and only indirectly related
to the material parameters of the medium even as defined
on the length scale R. Finally, we address the case of
intermediate Ericksen number (Er � 1), where the disclina-
tions wrapping the dragged colloid are displaced down-
stream to form a double twisting disclination wake.
Methodology.—The thermodynamics of the cholesteric

solvent is determined by the Landau–de Gennes free en-
ergy F . Its density f is expressed in terms of a (traceless
and symmetric) tensorial order parameter Q [8] as

f ¼ A0

2
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Here A0 is a constant (setting the energy scale), K is an
elastic constant, q0 ¼ 2�=p, and � is a temperaturelike
control parameter governing proximity to the isotropic-to-
cholesteric transition. In our notation Greek indices denote
Cartesian components and summation over repeated indi-
ces is implied; ���� is the permutation tensor.

We employ a 3D hybrid lattice Boltzmann algorithm [9]
to solve the Beris-Edwards equations for the evolution of
the Q tensor [8]:

DtQ ¼ �

���F
�Q

þ 1

3
tr

�
�F
�Q

�
I

�
: (2)

Here � is a collective rotational diffusion constant, and Dt

is the material derivative for rodlike molecules [8]. The
term in brackets is the molecular field H, which ensures
that in the absence of flow Q evolves towards a minimum
of the free energy. The velocity field obeys the continuity
equation and a Navier-Stokes equation with a stress tensor
���, generalized to describe liquid crystal hydrodynamics

[9]. For the hydrodynamics, the colloid is represented by
the standard method of bounceback on links [10], where
the lattice Boltzmann distributions which link solid to fluid
nodes in the underlying discretized space are used to
impose the appropriate boundary conditions at each step.
Tangential boundary conditions for n̂ are imposed on the
particle surface (n̂ is free to rotate in the tangent plane).
Order parameter variations create an additional elastic
force acting on the particle, Fel, which we computed by
integrating the stress tensor ��� over the particle surface

[11]: Fel
� ¼ R

dS����̂�, where �̂� is the local normal to

the colloid surface. Furthermore, the particle may rotate
due to elastic and hydrodynamic torques.

The thermodynamics of chiral liquid crystals is deter-
mined by the chirality 	 and the reduced temperature 
,
which are given in terms of previously defined quantities as

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
108Kq20=A0�

q
and 
 ¼ 27ð1� �=3Þ=�. The physics

of a colloidal particle moving in the liquid crystal is
controlled by the Ericksen number

Er ¼ �1vR=K; with �1 ¼ 2q2=�; (3)

which measures the ratio between viscous and elastic
forces. In the expression for Er, �1 is the rotational vis-
cosity of the liquid crystal, and q is the degree of ordering
in the system [for the uniaxial case with director n̂, Q�� ¼
qðn̂�n̂� � ���=3Þ]. The Ericksen number should deter-

mine which dynamical regime we are in. As we shall see,
the presence of the cholesteric helix brings another control
parameter into play: R=p. This changes the physics com-
pletely with respect to the nematic case.

We give most of our results in simulation units [9,12]. To
convert them into physical ones, we can assume an elastic
constant of 6.5 pN and a rotational viscosity of 1 P. (These
values hold for typical materials, and a colloidal diameter
of 1 �m.) In this way, one can show that the simulation

units for force, time, and velocity map onto 100 pN, 1 �s,
and 0:03 �m=s, respectively.
Results.—We first discuss the disclination structure

around the colloidal particle. In the case of planar anchoring,
a colloid in a nematic host leads to two surface defects of
topological chargeþ1 (boojums) [13]. In the case of a chiral
nematic host, we find that the behavior is determined by the
ratio between the colloidal size and the cholesteric pitch.
For R=p significantly smaller than 1=2, we observe two
defect patches on opposite sides of the particles [Fig. 1(a)].
On the other hand, if the particle size exceeds the pitch, then
the minimum energy configuration becomes a twisted pair
of disclination lines of opposite chirality, each of which
wraps around the particle [Figs. 1(b) and 1(c)]. These can be
viewed as elongated boojums, in which a 3d disclination
line of chargeþ1=2 lies adjacent to the surface terminating
in a 2d defect of a charge þ1=2 on the surface at each end.
The length of these ‘‘chiral rings’’ is not constant; rather, it
increases with the size of the particle, and for very large
colloids (R ¼ p) further disclination rings appear at the top
and bottom of the particle, leading to a more uniform
coverage of the surface. Unlike the transition between
Saturn rings and dipoles in standard nematic colloids [14],
this conformation change does not depend on the degree of
surface anchoring. It should thus be more easily observable
experimentally, purely by changing the particle size R or the
chiral fraction (and hence p) in a mixed nematogen. Just as
for the nematic case, the two defect patterns which we
found have sufficiently different geometry that they should
mediate quite distinct two-body and many-body effective
interactions, creating new avenues for directing the self-
assembly of colloids by tuning properties of the surrounding
matrix [7].
Having seen the importance of the control parameter

R=p in determining the statics of colloids in cholesterics, it
is natural to ask if this length-scale ratio leads to different
physics (from the nematic case, R=p ¼ 0) for their hydro-
dynamics as well. To address this question, we studied the
dynamics of colloids of various radii in response to a
constant pulling force, which is either parallel or perpen-
dicular to the axis of the cholesteric helix. First we consider
the Er � 1 regime.

FIG. 1 (color online). Defect structure close to the particle. The
arrow denotes the direction of the cholesteric helix. For a small
particle (a), R=p ¼ 1=4, there are two defect patches on opposite
sides. These elongate to form twisted disclination pairs for
particles with R=p � 1=2: (b) R=p ¼ 1=2 and (c) R=p ¼ 3=4.
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Figure 2 shows the average velocity-force relations ob-
served, for dragging perpendicular and parallel to the
cholesteric helix, at various R=p ratios. We fitted the data
by means of the following formula for the drag force:

fðvÞ ¼ fy þ aðRÞvR; (4)

where fy and aðRÞ, with dimensions of force and viscosity,

respectively, are parameters of the fit. We allow for a finite
‘‘yield force’’ fy, which can be seen as the microrheolog-

ical analogue of a yield stress. Our data show that the yield
force, while possibly nonzero, is very small [15], so that it
does not appreciably change our analysis [16]. Much more
striking than any yield force is the extended regime in
which the force is linear in velocity. (This would be the
usual criterion for accepting an active microrheology
measurement as measuring a length-scale-dependent, but
nonetheless linear, effective viscosity.) Figure 3 shows
the dependence of f=v� aR on R, for dragging both
perpendicular and parallel to the cholesteric helix. We
fitted these data with a power law f=v� R�. The data
corresponding to dragging perpendicular to the helical axis
are comparable with those reported for nematic colloids:
aðRÞ � R��1 is almost constant in agreement with Stokes’
law [19]. The fit gives � � 1:07� 0:10 (note that the
prefactor can depend on the in-plane angle between force
and director). In contrast, pulling along the helix shows
very different physics, with � � 1:7.

Oneway to discuss these results is to insist on Stokes’ law
as defining an effective microviscosity �ðRÞ ¼ aðRÞ=6�,

in which case for motion along the pitch �ðRÞ � R0:7. This
strong size effect could be attributable to the R dependence
of the defect structure or to non-Stokes features of the flow.
But unless these effects are fully understood, active mi-
crorheology is uninformative for chiral nematics, in the
sense that it measures a combined property of the probe
and environment rather than any material property (local
or otherwise) of the medium alone. Remarkably, this
breakdown arises at very low Er, in a regime where the v
dependence is still linear (Fig. 2). Our results can be
illuminated by considering that the bulk shear rheology
of cholesterics undergoing permeation flow along the pitch
direction. In this case, in any finite sample there is a regime
of linear rheology, but the shear viscosity increases linearly
with system size, diverging in the thermodynamic limit
[17,18]. Crudely treating the colloid radius R as an effec-
tive sample size then gives � ¼ 2, not far from the ob-
served value (� � 1:7).
To explore further the physics involved, Fig. 4 show

director profiles for a stationary colloid and ones moving
along the helical axis with Er � 0:03 and Er � 0:7. In the
stationary case the liquid crystal accommodates the colloid
by a local deformation involving the disclination pattern of
Fig. 1(c). Interestingly, even at very small forcing the
cholesteric layers slightly bend throughout the whole simu-
lation box; the elastic distortions induced by the colloid
motion appear long-ranged [Fig. 4(b)]. Here, the disclina-
tion rotates around the helical axis and is slightly displaced
in the downstream direction but still remains on the particle
surface. At larger Er [Fig. 4(c)], the bending of layers is
more pronounced, and the disclination is fully displaced
downstream to form a double twisting disclination ‘‘wake’’
[Fig. 4(d)].
In summary, we have reported lattice Boltzmann simu-

lations of a colloidal particle embedded in a cholesteric
liquid crystal. Focusing on tangential anchoring of the
liquid crystal at the colloidal surface, we have shown that
by changing the ratio between particle size and cholesteric
pitch it is possible to control the topology of the local
defects imposed by the presence of the colloid. For small
particles, the equilibrium configuration has two defects at
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FIG. 2. Average velocity-force characteristics for particles
with R=p equal to (from top to bottom) 3=4, 1=2, and 1=4,
respectively. The fits are with the formulas shown in the text. The
averages were calculated from the last 2:5–5� 104 simulation
steps. At steady state, the velocity along the helix shows slight
periodic fluctuations around the average value.
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opposite poles of the sphere. Increasing the particle size
leads to a texture with two twisted disclination lines of
opposite polarity, wrapping around the colloid. Both these
novel defect structures should be detectable in experiments
with crossed polarizers. When pulling the particle along
the cholesteric helix, we have found that the drag force is
linear in v but depends superlinearly on particle size, in
violation of Stokes’ law which is the usual basis for inter-
preting active microrheology experiments [2]. Laser
tweezers experiments (similar to those in nematic [21]
and in twisted nematic cells [22]) should be able to test
our predicted superlinear scaling.

We hope that our results will stimulate further experi-
ments [23] and theoretical work on the microrheology of
colloids in cholesterics. Furthermore, similar phenomenol-
ogy could be expected in various complex fluid phases
characterized by a spatially variable order parameter,
e.g., smectics, blue phases, and lyotropic cubic liquid
crystals, where one expects permeation flow to occur.
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