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Existing theoretical models of evolution focus on the relative fitness advantages of different mutants in
a population while the dynamic behavior of the population size is mostly left unconsidered. We present
here a generic stochastic model which combines the growth dynamics of the population and its internal
evolution. Our model thereby accounts for the fact that both evolutionary and growth dynamics are based
on individual reproduction events and hence are highly coupled and stochastic in nature. We exemplify
our approach by studying the dilemma of cooperation in growing populations and show that genuinely
stochastic events can ease the dilemma by leading to a transient but robust increase in cooperation.
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Commonly, Darwinian evolution in terms of reproduc-
tion, selection, and variation is described in frameworks of
population genetics and evolutionary game theory [1-3].
These approaches model the internal evolutionary dynam-
ics of a species’ different strategies (or traits) in a relative
perspective. Namely, they compare fitness terms and focus
on the relative advantage and abundance of different traits.
In such a setup, the time evolution of the relative abun-
dance x of a certain strategy is frequently described by a
replicator equation,

9, x = (f = (). D

A trait’s relative abundance will increase if its fitness f
exceeds the average fitness (f) in the population.

While in these evolutionary approaches the dynamics of
the population size N is mostly left unconsidered or as-
sumed to be fixed [3], in population ecology the dynamical
behavior of a species’ population size is studied. Models of
population dynamics [4,5] usually describe the time devel-
opment of the total number of individuals N by equations
of the form

a,N=TF(N,1. (2)

JF(N, 1) is in general a nonlinear function which includes
the influence of the environment on the population, such as
the impact of restricted resources or the presence of other
species. By explicitly depending on time, a changing en-
vironment such as, for example, the seasonal variation of
resources can be taken into account.

The internal evolution of different traits and the dynam-
ics of a species’ population size are, however, not inde-
pendent [6]. Actually, species typically coevolve with other
species in a changing environment, and a separate descrip-
tion of both evolutionary and population dynamics is in
general not appropriate. Not only population dynamics
affects the internal evolution (as considered, for example,
by models of density-dependent selection [7]), but
also vice versa. Illustrative examples of the coupling are
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biofilms which permanently grow and shrink. In these
microbial structures diverse strains live, interact, and out-
compete each other while simultaneously affecting the
population size [8]. So far, specific examples of this cou-
pling have been considered by deterministic approaches
only, e.g., [9,10]. However, classical and recent work have
emphasized the importance of fluctuations for internal
evolution which are only accounted for by stochastic,
individual-based models, e.g., [11-14].

In this Letter, we introduce a class of stochastic models
which consider the interplay between population growth
and its internal dynamics. Both processes are based
on reproduction events. A proper combined description
should therefore be solely based on isolated birth and death
events. Such an approach also offers a more biological
interpretation of evolutionary dynamics than common for-
mulations like the Fisher-Wright or Moran process
[1,3,12,15]. That is to say, fitter individuals prevail due to
higher birth rates and not by winning a tooth-and-claw
struggle where the birth of one individual directly results
in the death of another one. The advantage of our formu-
lation is illustrated by the dilemma of cooperation where a
transient increase in cooperation can be found [which does
not exist in standard approaches, Eq. (1)].

In the following, we consider two different traits, A and
B, in a well-mixed population; however, generalizing the
model to more traits is straightforward. The state of the
population is then described by the total number of indi-
viduals N = N, + Ny and the fraction of one trait within
the population x = N4/N. The stochastic evolutionary
dynamics is fully specified by stochastic birth and death
events with rates

I'gs = Gs(x, N)Ng, Is.p = Ds(x, N)Ns,  (3)
where Gg(x, N) and Dg(x, N) are per capita reproduction
and death rates for an individual of type S € {A, B}, re-
spectively. We consider these rates to be separable into
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a global and relative part, meaning a trait-independent and
trait-dependent part:

GS = g(x’ N)fS(x)7 DS = d(-xr N)WS(-X) (4)
The global population fitness g(x, N) and the global popu-
lation weakness d(x, N) affect the population dynamics of
all traits in the same manner. For example, they account for
constraints imposed by limited resources or how one strat-
egy impacts the whole population. In contrast, the relative
fitness f¢(x) and the relative weakness wg(x) characterize
the relative advantage of one strategy compared to the
other. They are different for each trait and depend, in a
first approach, only on the relative abundance x [16]. The
relative fitness terms fg(x) affect the corresponding birth
rates, and the relative weakness functions w(x) describe
the chances for survival of distinct traits.

While in evolutionary game theory only the relative
fitness is considered [2], and common models of popula-
tion dynamics take only the global functions into account,
we consider here both global and relative fitness and show
how their interplay determines the evolutionary outcome of
a system. In the following, we set wy(x) = wg(x) = 1 in
order to compare our unifying approach with standard
formulations [2]. Though the full stochastic dynamics are
given by a master equation, it is instructive to disregard
fluctuations for now and examine the corresponding set of
deterministic rate equations:

atx = g(x) N)(fA(x) - <f>)x’ (Sa)

where (f) = xf4 + (1 — x)f5 denotes the average fitness.
Equation (5a) has the form of a replicator equation [2].
However, in Eq. (52a) there is an additional factor, namely,
the global population fitness g(x, N). This leads to a cou-
pling of x and N whose implications we will discuss later
on. Similarly, Eq. (5b) describing population growth is
coupled to the internal evolution, Eq. (5a). Note that for
frequency-independent global functions, g(x, N) = g(N)
and d(x, N) = d(N), Egs. (5) resemble Egs. (1) and (2).
Only then, the deterministic dynamics reduces to the com-
mon scenario [12,13,15], where a changing population size
is immaterial to the evolutionary outcome of the dynamics
[3]. For the full stochastic dynamics the strength of fluc-

tuations scales as 4/1/N [3,11,14] and thereby is strongly
affected by population growth.

In more realistic settings, the global fitness and weak-
ness functions, g(x, N) and d(x, N), can also depend on the
relative abundance x. This implies an interdependence of
population growth and internal evolution. In the following,
we focus on one particular but very important example: the
dilemma of cooperation in a growing population. There is
an ongoing debate in sociobiology regarding how coopera-
tion within a population emerges in the first place and
how it is maintained in the long run [8,17]. Microbial
biofilms serve as versatile model systems [8,18-20].

There, cooperators are producers of a common good, usu-
ally a metabolically expensive biochemical product. For
example, for the proteobacteria Pseudomonas aeruginosa,
cooperators produce iron-scavenging molecules (sidero-
phores). Released into the environment, these molecules
strongly support the iron uptake of each individual in the
population [20]. Cooperators thereby clearly increase
the global fitness of the population as a whole, leading
to a faster growth rate and a higher maximum population
size [20]. In such a setting, however, nonproducers
(“‘cheaters”) have a relative advantage over cooperators
as they save the cost of providing the common good,
e.g., the production of siderophores. Hence, their relative
fraction is expected to increase within the population,
implying that the global fitness of the population declines.
Surprisingly, as we show in the following, a coupling
between growth and internal evolution can overcome this
dilemma transiently, and the average level of cooperators
can increase despite a disadvantage in relative fitness.

We model the internal evolutionary dynamics by the
prisoner’s dilemma game [2,17]. Within this standard ap-
proach, individuals are either cooperators (A) or cheaters
(B). While cooperators provide a benefit b to all players
at the expense of a (metabolic) cost ¢ < b, a cheater saves
the cost by not providing the benefit. The relative fitness of
these traits is given by f4(x) = 1 + s[(b — ¢)x — ¢(1 — x)]
and fz(x) = 1 + sbx, respectively, where the frequency-
independent and dependent parts are weighted by the
strength of selection s [12]. Analyzing the prisoner’s
dilemma per se, defectors are always better off than coop-
erators because of their advantage in relative fitness,
Falx) < fp(x) [17]. In the following, we choose for specif-
icity b = 3 and ¢ = 1; however, our conclusions are inde-
pendent of the exact values.

Importantly, cooperation positively affects the whole
population by increasing its global fitness, e.g., by produc-
tion of a common good such as siderophores. Here, we
consider bounded population growth with a growth rate
increasing with the cooperator fraction x. In detail, we
choose an x-dependent global fitness, g(x) = 1 + px, and
an N-dependent global weakness, d(x, N) = N/K, ac-
counting for limited resources. For p = 0, one obtains
the well-known dynamics of logistic growth [21] with a
carrying capacity K. For p >0, the carrying capacity,
K(1 + px), depends on the fraction of cooperators. For
instance, for P. aeruginosa [20], the iron uptake, and hence
the birth rates, increase with a higher siderophore density
and therefore with a higher fraction of cooperators.

To analyze the evolutionary behavior of our model we
performed extensive simulations of the stochastic dynam-
ics given by the master equation determined by the birth
and death rates, Eq. (3). All ensemble averages were per-
formed over a set of 10* realizations. In Fig. 1 the average
population size N and the average fraction of cooperators
x are shown for different initial population sizes N.
The influence of a frequency-dependent growth on the
population is twofold. First, starting in the regime of
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FIG. 1 (color online). The dilemma of cooperation in growing
populations. (a) Average population size over time. Because of a
cooperation-mediated growth advantage, it can show an over-
shoot. The gray (red) line corresponds to simulation results while
the black line is obtained by evaluating Egs. (6). (b) The average
level of cooperation increases transiently for times ¢ < 7., espe-
cially if the initial population size is small meaning fluctuations
are large. The parameters are given by xo = 0.5, b =3, c =1,
s = 0.05, K = 100, and p = 10. In (a), N, is 4. In (b), the gray
lines correspond to Ny = 2 (blue), 4 (red), and 12 (green), from
top to bottom. The black line is obtained by evaluating Egs. (6)
for Ny = 4. Cooperation times 7, are denoted by thin lines.

exponential growth, the frequency-dependent global fitness
may cause an overshoot in the population size [Fig. 1(a)].
Second, and more strikingly, the selection disadvantage of
cooperators can be overcome and a transient increase of
cooperation emerges [Fig. 1(b)]. It is maintained until a
time 7., which we term as the cooperation time.

Both phenomena rely on a subtle interplay between
internal evolution, with a selection pressure towards
more defectors, and population growth, with a growth
rate increasing with the fraction of cooperators. While
the overshoot in population size can already be understood
on the basis of the rate equations,

d,x = —s(1 + px)x(1 — x), (6a)
3, N =[(1 + px)(f) — N/KIN, (6b)

the transient increase of cooperation is a genuinely sto-
chastic event as discussed in detail below. A first impres-
sion of the antagonism between selection pressure and
growth can already be obtained by examining the charac-
teristic time scales. While the fraction of cooperators
changes on a time scale 7, « 1/s, the population size
evolves on a time scale 7, « 1. Hence, the strength of
selection s regulates the competition between population
growth and internal dynamics. For s >> 1, selection is
much faster than growth dynamics. Therefore, the rapid
ensuing extinction of cooperators cannot be compensated
for by the growth advantage of populations with a larger
fraction of cooperators. In contrast, in the limit of weak
selection (s < 1), growth dynamics dominates selection
and both an overshoot in the population size and a transient
increase of cooperation become possible (see below). In
the following we focus on this latter, more interesting,
scenario of weak selection (7 < 7).

Let us first consider the overshoot in the population size
[Fig. 1(a)]. It is caused by a growth rate and a carrying
capacity which are increasing functions of the fraction of
cooperators (here we use p = 10 as observed in microbial
experiments [19]). For ¢ < 7,, a small population [N <«
K(1 + pxy)] with an initial fraction of cooperators x
grows exponentially towards its comparatively large carry-
ing capacity K(1 + pxg). During this initial time period the
fraction of cooperators evolves only slowly and can be
considered as constant. On a longer time scale, t > 7,
however, selection pressure drives the fraction of cooper-
ators substantially below its initial value x,, leading to a
smaller carrying capacity, K(1 + px). Finally, cooperators
go extinct and the population size decreases to K. This
functional form of N(z) is well described by the rate
equations (6); see black line in Fig. 1(a).

In contrast, the transient increase of cooperation, cf.
Fig. 1(b), cannot be understood on the basis of a simple
deterministic approach, where d,x = 0 holds strictly [see
black line in Fig. 1(b)]. It is a genuinely stochastic effect,
which relies on the amplification of stochastic fluctuations
generated during the initial phase of the dynamics where
the population is still small. In more detail, for small
populations, the fraction of cooperators is subject to strong
fluctuations and differs significantly from one realization
to another. Crucially, due to the coupling between the
growth of a population and its internal composition, these
fluctuations are amplified asymmetrically, favoring a more
cooperative population; i.e., growth, set by the global fit-
ness g(x), is amplified by an additional cooperator while it
is hampered by an additional defector. This implies that the
ensemble of realizations becomes strongly skewed towards
realizations with more cooperators. If this effect is strong
enough the ensemble average x(1) = X ;N4 (¢)/>;N;(1),
which describes the mean fraction of cooperators when
averaging over different realizations i, increases with time.
Because of a subsequent antagonism between selection
pressure towards more defectors and asymmetric exponen-
tial amplification of fluctuations during growth phase, there
is only a transient increase of cooperation in a finite time
window, ¢ € [0, z.]. These findings are illustrated in a
movie in [22] showing the time evolution of the probability
distribution for an ensemble of stochastic realizations.

Additional qualitative and quantitative insights can be
gained from analytic calculations via a van Kampen ap-
proximation [23]; see the supplementary material [22].
Thereby starting with a master equation given by Eq. (3),
first and higher moments of the fluctuations can be obtained.
They show that fluctuations during the first generation
(i.e., doubling the initial population size on average) are
by far the dominant source for the variance in the compo-
sition of the population. In addition (see below), these
calculations give a strictly lower bound on the parameter
regime where the cooperation time is finite and thus quan-
tify the magnitude of fluctuations necessary to overcome
the strength of selection acting against cooperators.
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FIG. 2 (color online). Dependence of the cooperation time 7,
on the strength of selection s and the initial population size N.
There exist two distinct phases: the phase of transient maintained
cooperation (where ¢, > 0 holds) and the phase of extinction of
cooperation (where 7. = 0). The boundary of both phases (solid
line) is approximately given by sN, = p/(1 + px,) (dashed
line). The cooperation time ¢, is shown for varying s but fixed
Ny in the inset. See text and [22].

Figure 2 shows the cooperation time 7, with varying
selection strength s and initial population size N,. For
large s and N, (light gray area), t. is identical to zero;
i.e., the fraction of cooperators always decreases as pre-
dicted by the deterministic replicator dynamics, Eq. (6a).
In contrast, if s and N, are sufficiently small, 7. is finite.
The transition between these regimes is discontinuous and
is marked by a steep drop in the cooperation time from a
finite value to zero; see Fig. 2 (inset). A strictly lower
bound for the phase boundary (Fig. 2, solid line) can be
derived analytically by comparing the antagonistic effects
of drift and fluctuations; see [22]. Its asymptotic behavior
for large N is given by sNy = p/(1 + px,) (Fig. 2, dashed
line). This behavior resembles the condition for neutral
evolution [11,14]. Indeed, for sNy < p/(1 + px;), fluctu-
ations dominate and the system evolves neutrally. It is this
neutral evolution leading to sufficiently large fluctuations
which in turn—by asymmetric amplification—result in a
transient increase of cooperation.

In summary, we introduced a general approach, which
couples the internal evolution of a population to its growth
dynamics. Both processes originate from birth and death
events and are therefore naturally described by a unifying
stochastic model. The standard formulations of evolution-
ary game theory and population dynamics emerge as special
cases. Importantly, by including the coupling, our model
offers the opportunity to investigate a broad range of phe-
nomena which cannot be studied by standard approaches.
We have demonstrated this for the prisoners’ dilemma in
growing populations. Here, a transient regime of increasing
cooperation can emerge by a fluctuation-induced effect. For
this effect, the positive correlation between global popula-
tion fitness and the level of cooperation is essential. Similar
to the Luria-Delbriick experiment [24], initial fluctuations
in the fraction of cooperators are exponentially amplified.
Here, this renders it possible for cooperators to overcome
the selection advantage of defectors.

In biological settings, growth is ubiquitous: populations
regularly explore new habitats, or almost go extinct by
external catastrophes and rebuild afterwards. For a realistic
description, it is therefore necessary to relax the assump-
tion of a decoupled population size. Especially for
bacterial populations undergoing a life cycle with a re-
peated change between dispersal and maturation phases
[8,18-20], a transient increase in cooperation may be
sufficient to overcome the dilemma of cooperation.
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