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A minimum set of equations based on the peeling-ballooning (P-B) model with nonideal physics effects

(diamagnetic drift, E� B drift, resistivity, and anomalous electron viscosity) is found to simulate pedestal

collapse when using the new BOUT++ simulation code, developed in part from the original fluid edge code

BOUT. Nonlinear simulations of P-B modes demonstrate that the P-B modes trigger magnetic reconnec-

tion, which leads to the pedestal collapse. With the addition of a model of the anomalous electron viscosity

under the assumption that the electron viscosity is comparable to the anomalous electron thermal

diffusivity, it is found from simulations using a realistic high-Lundquist number that the pedestal collapse

is limited to the edge region and the edge localized mode (ELM) size is about 5%–10% of the pedestal

stored energy. This is consistent with many observations of large ELMs.
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The problem of fast reconnection in high-Lundquist
number plasmas has attracted a great deal of attention, in
large part due to its relevance to impulsive phenomena
such as magnetospheric substorms, solar and stellar flares,
sawtooth crashes and edge localized modes (ELMs) in
tokamaks. Here we report fast-reconnection simulation
studies in ELMs in high-confinement mode (H-mode)
tokamak discharges [1]. The H-mode pedestal, the region
of strongly reduced turbulence and transport just inside the
limiting flux surface, is very important for the fusion
performance of ITER. The ELMs, however, are quasiperi-
odic relaxations of the pedestal, resulting in a series of hot
plasma eruptions that could potentially damage the ITER
divertor plates and first walls.

Through the development of the theory of peeling-
ballooning (P-B) modes and their numerical implementa-
tion in codes such as ELITE [2,3], a robust prediction of
edge MHD stability limits is available for existing and
future tokamaks. It has been found that large ELMs are
triggered and pedestal height is constrained by ideal P-B
stability. P-B modes are ideal MHD modes which are
driven by a combination of sharp pressure gradients (bal-
looning) and bootstrap current in the pedestal. Onset of
each ELM (type-I) was consistently found to correlate with
crossing of the ideal P-B stability boundary [4]; i.e., P-B
theory successfully describes the trigger of the ELM.
However the nonlinear dynamics, and, in particular, the
physics of the ELM energy loss and pedestal dynamics
after the onset of each ELM (type-I) remain uncertain.

Nonlinear ELM simulations become computationally
difficult for high-Lundquist number due to the fine resolu-
tion needed to resolve the narrow current sheet and/or
narrowing fingers as a result of explosive ideal MHD
instabilities predicted from nonlinear ballooning theory
[5,6], leading to collapse of the simulation time step at

the early nonlinear stage of P-B mode development [6]. A
common practice is to use an anomalous resistivity and/or
ion viscosity to achieve nonlinear ELM simulations, which
leads to significantly different linear growth rates and
instability thresholds. Furthermore, in nonlinear resistive
MHD simulations, the pedestal pressure collapses deep
into the plasma core, which yields much larger Elm sizes
than observed.
In the present Letter, we describe three-fields nonlinear

simulations of plasma edge pedestal collapse in the toka-
mak configuration. The simulations are carried out in the
BOUT++ two-fluid framework [7], which allows studies of

nonlinear dynamics of ELMs including extensions beyond
MHD physics. Based on the P-B model with nonideal
physics effects (diamagnetic drift, E� B drift, resistivity,
and anomalous electron viscosity), a minimum set of non-
linear equations for perturbations of the magnetic flux Ak,
electric potential�, and pressure P can be extracted from a
complete set of BOUT two-fluids equations [8] with an addi-
tional effect of hyper-resistivity [9]. This can be written as

@$

@t
þ vE � r$ ¼ B0rkJk þ 2 ~b0 � ~�0 � rP; (1)

@P

@t
þ vE � rP ¼ 0; (2)

@Ak
@t

¼ �rk�þ �

�0

r2
?Ak � �H

�0

r4
?Ak; (3)

$ ¼ n0Mi

B0

�
r2

?�þ 1

n0Zie
r2

?P
�
; � ¼ �þ�0;

Jk ¼ Jk0 � 1

�0

r2
?Ak; vE ¼ 1

B0

ðb0 �r?�Þ: (4)

PRL 105, 175005 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

22 OCTOBER 2010

0031-9007=10=105(17)=175005(4) 175005-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.175005


Here rkF ¼ B@kðF=BÞ for any F, @k ¼ @0k þ ~b � r, ~b ¼
~B=B ¼ rkAk � b0=B, @0k ¼ b0 � r, �0 ¼ b0 � rb0.

Although hyper-resistivity �H, also known as electron vis-
cosity, is generally negligibly small in collisional plasmas,
it can be significant in a collisionless plasma. In this model
the frozen-in flux constraint of ideal MHD theory is broken
by either resistivity or hyper-resistivity.

To study the physics of nonlinear P-B mode dynamics,
we choose circular cross-section toroidal equilibria with
an aspect ratio of 2.9 generated by the TOQ equilibrium
code. Two model equilibria will be simulated for H-mode
plasmas with steep pressure and current gradients at the
edge [10]. The first equilibrium is far from the marginal
P-B instability threshold with a pedestal toroidal pressure
�t0 ¼ 1:941� 10�2 and a normalized pedestal width
Lped=a ¼ 0:0486. The second equilibrium is near the mar-

ginal P-B instability threshold with �t0 ¼ 1:45� 10�2

and Lped=a ¼ 0:0518. Parameters that are held fixed

between the two include a minor radius a ¼ 1:2 m, major
radius R0 ¼ 3:4 m, toroidal field on axis B0 ¼ 2T, an edge
qa ’ 3, the pedestal pressure 2=3 of the axis pressure, and a
pedestal half-width 7% of the poloidal flux. In this study,
the resistivity �, hyper-resistivity �H and edge density
n0 ¼ 1� 1019 m�3 are treated as constants in space-time
across the simulation domain. In the present simplified
model, both equilibrium flow and turbulent zonal flow
have been set to be zero: V0 ¼ VE0 þ VrPi

¼ 0 and

h�vi� ¼ hvEi� þ hvrPi
i� ¼ 0. Therefore, the equilibrium

electric field is Er0 ¼ ð1=n0ZieÞrrPi0 with ion pressure
Pi0 ¼ P0=2, and the perturbed electric field is hEri� ¼
ð1=n0ZieÞrrhPii� . The zonal magnetic field is also set to

be zero as it is negligibly small compared to the equilib-
rium magnetic field B0.

The Eqs. (1)–(4) are solved using a field-aligned (flux)
coordinate system (x, y, z) with shifted radial derivatives
[7]. Differencing methods used are 4th-order central
differencing and 3rd-order WENO advection scheme.
The resulting difference equations are solved with a fully
implicit Newton-Krylov solver: Sundials CVODE package.
Radial boundary conditions used are $ ¼ 0, r2

?Ak ¼ 0,

@P=@c ¼ 0, and @�=@c ¼ 0 on inner radial boundary;
$ ¼ 0, r2

?Ak ¼ 0, P ¼ 0, and � ¼ 0 on outer radial

boundary. The domain is periodic in y (with a twist-shift
condition) and periodic in z (toroidal angle). For efficiency,
when performing nonlinear simulations, only 1=5th of the
torus is simulated. The number of grid cells in each coor-
dinate are nc ¼ 512, n� ¼ 64, n� ¼ 32 for linear runs and

n� ¼ 64, 128, 256 for nonlinear runs.

A series of BOUT++ simulations is conducted to inves-
tigate the scaling characteristics of the P-B mode as a
function of two dimensionless quantities S and SH. One is
a S scan for a fixed SH ¼ 1012, while the other is a SH scan
for a fixed S ¼ 107 or S ¼ 108. Here the Lundquist number
S ¼ �0R0vA=� is the dimensionless ratio of an Alfvén

wave crossing time scale to a resistive diffusion time scale
of magnetic field. Here vA is the Alfvén velocity. Similarly,
the hyper-Lundquist number SH ¼ �0R

3
0vA=�H ¼ S=	H

is the dimensionless ratio of an Alfvén wave crossing
time scale to a hyper-resistive current diffusion time
scale, with a dimensionless hyper-Lundquist parameter
	H ¼ �H=R

2
0�. For a collisional electron viscosity, 	H ’

�e=R
2
0
ei. Assuming that the anomalous kinematic electron

viscosity �e is comparable to the anomalous electron ther-
mal diffusivity �e, for edge plasma parameters �e ’ �e ’
1 m2=s and electron-ion collision frequency 
ei ’ 105=s,
we can estimate the amplitude of the hyper-Lundquist
parameter to be 	H ’ 10�4–10�6.
Linear simulations of P-B mode evolution find good

agreement in growth rate and mode structure with ELITE
calculations [3,7]. Figure 1 shows the growth rate vs toroi-
dal mode number n of the first equilibrium as calculated
by BOUT++ for various cases. The growth rate for ideal
MHD P-B mode is plotted as black dotted line. The influ-
ence of the E� B drift, diamagnetic drift, resistivity,
and anomalous electron viscosity on P-B modes is also
shown. We find that (i) the diamagnetic drift and E� B
drift stabilize the P-B mode (yellow square in Fig. 1)
in a manner consistent with theoretical expectations;
(ii) resistivity destabilizes the P-B mode, leading to resis-
tive P-B mode, (pink inverted triangle for S ¼ 105 and
SH ¼ 1); (iii) anomalous electron viscosity destabilizes
the P-B mode [11], leading to a viscous P-B mode; for a
fixed S ¼ 108, red open circle for 	H ¼ 10�4, blue right
triangle for 	H ¼ 10�5, green triangle for 	H ¼ 10�6. For
all runs of the viscous P-B mode, except as otherwise
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FIG. 1 (color online). Toroidal mode spectrum of the first
equilibrium as calculated by BOUT++ for following cases: ideal
MHD (black dotted line), ideal MHD with E� B and diamag-
netic drift (yellow square), S ¼ 105 and SH ¼ 1 (pink inverted
triangle), S ¼ 108 and 	H ¼ 10�4 (red open circle), S ¼ 108

and 	H ¼ 10�5 (blue right triangle), S ¼ 108 and 	H ¼ 10�6

(green triangle). The growth rates are normalized to the Alfvén
frequency !A.
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noted, SH ¼ 1012. For a fixed S ¼ 108, as 	H reduces from
10�4 to 10�6, both resistive and viscous effects disappear.
BOUT++ reduced-MHD modeling of Eqs. (1)–(3) captures

the marginal stability value n > 3.
Nonlinear simulations of P-B modes at the early

nonlinear stage of development reveal that the current
sheet narrows with increasing Lundquist numbers. For
typical edge parameters, the Lundquist number is around
S ’ 108–1010, the growth rate of the P-B mode is around
�PB ’ 0:1!A, and the width of the resistive current sheet

�J ’ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!A=�PB=S

p
is around 10–100 microns, which is on

the order of a characteristic scale of electron Larmor radius

e. In the absence of the hyper-resistivity, the simulation
time step collapses as the radial scale length of the current
sheet approaches to the radial grid spacing �x for typical
resistive MHD simulations �x � �J ’ 
e. With the
hyper-resistivity, the width of the hyper-resistive current

sheet is �H ’ Rð!A=�PB=SHÞ1=4. The origin of the hyper-
resistivity is thought to be small-scale electron turbulence in
theH-mode pedestal. For the rest of the Letter, SH ¼ 1012;
hence �Hð’ 1:78 mmÞ>�xð’ 1:1 mmÞ � �J with
�H=�J > 17:8.

The radial pressure profiles at the outer midplane at
several different time slices and different Lundquist num-
bers are shown in Fig. 2. It is clearly shown that the
pedestal pressure collapses deeply inside the core plasma
at low Lundquist number (S ¼ 105). It is also shown that
for high-Lundquist number there are two distinct processes
in the evolution of pressure profiles: a fast collapse greatly
flattening the pressure profile near the peak pressure
gradient on the order of tens of Alfvén times after the onset
of nonlinear P-B mode, t ¼ 74�A, and a subsequent slow
buildup of pressure gradient. We can characterize the fast
collapse as a magnetic reconnection (triggered by P-B
modes) ! an island formation ! bursting process, and a
slow buildup as a turbulence transport process. The radial-
poloidal pressure profiles clearly show the characteristics
of the ballooning mode.

Defining an ELM size as �th
ELM ¼ �WPED=WPED ¼

hRRout

Rin

H
dRd�ðP0 � hPi� Þit=

RRout

Rin

H
dRd�P0, the ratio of

the ELM energy loss (�WPED) to the pedestal stored
energy Wped (Wped ¼ 3=2PpedVplasma), the ELM size can

be calculated from each nonlinear simulation. Here, P is
the pedestal pressure and the symbol hit means the average
over time (� 50–100�A) and symbol hi� means the aver-

age over bi-normal periodic coordinate. The lower integral
limit is the pedestal inner radial boundary Rin, while the
upper limit is the radial position of the peak pressure
gradient Rout. Alternatively, the ELM size �ELM can be
calculated by radially integrating the pressure profile at
the outer midplane as done in experiments, which are
denoted by case 1a and 2a in Table I and II for equilibrium
1 and 2. The ELM size scaling vs Lundquist number S is
given in the Table I. For better convergence a small parallel
diffusion term is added to Eq. (2) in case 2 and in case 1 for

S ¼ 1010. The large resistivity (S / ��1) yields a large
ELM size for both equilibria, which is contradictory to
experimental observations in many devices that the relative
ELM size scales inversely with pedestal collisionality [12].
However, with a fixed hyper-resistivity SH ¼ 1012, when
S > 107, which is relevant to today’s modestly sized
tokamaks and ITER, the ELM size is insensitive to the
resistivity. The ELM size for the second equilibrium is
much smaller than that for the first as expected.
The ELM size scaling vs dimensionless hyper-

Lundquist parameter 	H is given in the Table II. The
ELM size is proportional to the hyper-resistivity. If we
assume that the hyper-resistivity scales inversely with
pedestal collisionality (�H / 
�


ei , 
 > 0), then the ELM
size scales inversely with pedestal collisionality, which is
consistent with experiments in the high-Lundquist number
regime. In this regard, the hyper-resistivity induced by
dissipative small-scale electron turbulence could possibly
yield a consistent collisionality scaling.
From Fig. 2 and Table I and II it is reasonable to

conclude that the ELM size is determined by the fast
collapse due to the magnetic reconnection. Indeed, field
line tracing indicates the creation of magnetic islands and
stochastic magnetic field during the collapse, as shown in
Fig. 3. The size of the fast collapse is proportional to the
size of the primary magnetic island at the outer midplane
near the location of the peak pressure gradient. A magnetic
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R 2

R 0

R 2

R(m)

FIG. 2 (color online). Radial pressure profiles at several differ-
ent Lunquist numbers S and time slices (t ¼ 0, 74, 160�A) for
the first equilibrium: The black dotted line for t ¼ 0; blue dashed
group lines for S ¼ 105 at t ¼ 74�A and 160�A; red solid group
lines for S � 107 at t ¼ 74�A; yellow dotted-dashed group lines
for S � 107 at t ¼ 160�A. The vertical line indicates the position
of peak pressure gradient. Here SH ¼ 1012.

TABLE I. Elm sizes vs Lundquist number S with SH ¼ 1012.

S 104 105 107 108 109 1010

Case 1 47.18% 28.68% 5.04% 4.67% 4.47% 6.07%

Case 1a 50.96% 35.24% 10.67% 10.02% 10.08% 10.20%

Case 2 45.10% 36.66% 0.22% 0.24%

Case 2a 49.31% 51.56% 1.47% 1.42%
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island with half-width �is is defined by �2
is ¼ 4LsAk=B0

with Ls ¼ qR=s. The estimated island width �is ’ 6:6 cm
at the time of the maximum fast pressure collapse is much
wider than the separation distance of the mode rational
surfaces �q ¼ ðdr=dqÞ=n with mode number n ¼ 15:

�is � �q in the pedestal region; island overlap and mag-

netic braiding occur, leading to a catastrophic increase of
transport, as shown in Fig. 3(b). Further into the core
plasma region where perturbed Ak is small, almost good

flux surfaces (horizontal curves) and islands can be clearly
seen in Fig. 3(c), a zoom-in view of the line trace between
x ¼ �0:35 and �0:41. While for low S cases, magnetic
fluxes are broken everywhere due to large Ak resulting

from large magnetic diffusion.
Figure 4 shows the time history of the root-mean-

squared Akrms over the bi-normal coordinate at the outer

midplane and at the position of peak pressure gradients for
both equilibrium 1 and 2. The perturbation grows exponen-
tially from its very small initial valuewith only one toroidal
mode n ¼ 15. It is clearly shown that the linear growth rate
for the first equilibrium is higher than that of the second
equilibrium as expected from linear theory and the initial
nonlinear saturation amplitude for the first equilibrium is
about 4 times higher than that of second. For the first
equilibrium, the time history of Akrms at the outer midplane

shows the collapse after the onset of nonlinear saturation at
a late time t ¼ 105�A, while the pressure profile collapses
at t ¼ 74�A. The magnetic fluctuations suddenly start to

grow at the onset of the pressure crash. This observation
indicates that large ELMs are essentially nonlinear and
catastrophic events but evolve from the growth of linear
instabilities. The stochastic region is significantly shrunk
by the time at t ¼ 165�A after the ELM event.
In conclusion, it is found from nonlinear simulations that

the P-B modes trigger magnetic reconnection, which drives
the collapse of the pedestal pressure. The hyper-resistivity
is found to limit the radial spreading of ELMs by facilitat-
ing magnetic reconnection.
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FIG. 4 (color online). Time history of the root-mean-squared
Ak at the outer midplane and peak pressure gradients for both

equilibrium 1 and 2, where S ¼ 108, 	H ¼ 10�4 for the first
equilibrium, and 	H ¼ 10�5 for the second. Pedestal pressure
profile collapses at tp1 ¼ 74�A for the first equilibrium and at

tp2 ¼ 171�A for the second.

TABLE II. Elm sizes vs hyper-Lundquist number SH

	H (SH ¼ S=	H) 10�4 6� 10�5 10�5 5� 10�6

Case 1 S ¼ 107 11.59% 8.45% 5.04%

Case 1a S ¼ 107 21.68% 17.97% 10.7%

Case 2 S ¼ 108 5.94% 0.22% 0.14%

Case 2a S ¼ 108 11% 1.47% 1.5%

FIG. 3 (color online). (a) Radial distance x vs safety factor q,
dashed lines show rational surfacesq ¼ m=nwithn ¼ 15; (b) line
trace forS ¼ 108 andSH ¼ 10�4 during pedestal pressure crash in
field-aligned coordinate (x, y, z); (c) a zoom-in view of small
region x ¼ ½�0:41;�0:35� in (b) to show the island formation.
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