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The mechanism for a new instability in magnetized plasmas is presented and a dispersion relation

derived. Unstable behavior is shown to result purely from transport processes—feedback between the

Nernst effect and the Righi-Leduc heat-flow phenomena in particular—neither hydrodynamic motion nor

density gradients are required. Calculations based on a recent nanosecond laser gas-jet experiment

[D.H. Froula et al., Phys. Rev. Lett. 98, 135001 (2007)] predict growth of magnetic field and temperature

perturbations with typical wavelengths of order 50 �m and characteristic growth times of �0:1 ns. The

instability yields propagating magnetothermal waves whose direction depends on the magnitude of

the Hall parameter.
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The existence of large self-generated magnetic fields in
laser-produced plasmas (� 100 T) has long been known
[1,2]. These fields can significantly affect the distribution
of thermal energy in plasma targets by suppressing the
cross-field thermal conductivity [3]. In recent years several
experiments have been designed to assess their impact on
inertial confinement fusion (ICF) schemes [4] and to study
more general magnetic phenomena in laser plasmas, such
as magnetic reconnection [5] and instability [6]. In addi-
tion, there has been increased discussion of the possible
uses for applied magnetic fields in the suppression of
nonlocal transport [7], control of plasma density channels
[8], wakefield acceleration [9] and magnetized target fu-
sion (MTF) schemes [10].

In this Letter we report a new instability shown compu-
tationally to impact on magnetized plasmas, though it may
also take effect in the presence of self-generated fields. The
instability compresses the magnetic field and distorts
thermal-energy profiles by concentrating the heat flow
(see Fig. 1), and may be important when a high degree of
symmetry or control of heat transport is needed, or where
uniform fields are applied for a specific purpose, such as
those cases mentioned above [7–10].

Feedback is driven solely by classical (Braginskii) trans-
port processes [3], specifically the interaction of the Nernst
effect, which describes advection of magnetic field with
heat-flow down temperature gradients q? and with veloc-
ity vN � 2q?=5Pe, where Pe is the isotropic pressure [11],
and the Righi-Leduc heat-flow, the cross-field thermal-flux
‘‘bent’’ by magnetic fields acting on negatively charged
heat-carrying electrons. Consequently, we require only the
presence of temperature gradients rTe perpendicular to an
existing magnetic field for instability. Gradients in electron
number density ne are not needed (i.e., rne ¼ 0, preclud-
ing rTe �rne field generation), nor hydrodynamic mo-
tion or anisotropic pressure. Thus, what we see is distinct
from instabilities existing in the literature such as the
field-generating thermal instability [12–14], for which

rTe �rne is necessarily nonzero; and those of Weibel
[15], where magnetic fields are not essential; Haines
[16,17], which does not require either Righi-Leduc heat
flow or the Nernst effect; and Davies [18], where unstable
filamentation arises from plasma motion.

In our case, terms responsible for growth go as k3=2,
where k is the wave number of a perturbation, yielding
traveling waves rather than purely growing perturbations.
These, however, differ from the thermal-magnetic waves
described by Pert [19] who neglected the Nernst effect.
We present an analytical theory of the instability along-

side results from numerical simulation in the context of an
experimental arrangement which uses applied magnetic
fields; specifically the conditions of Froula et al. [7], in

FIG. 1. Snapshots of the instability taken at 700 ps (top),
800 ps (center), and 900 ps (bottom), from CTC simulations of
the experiment of Froula et al. [7] for the case of an 8 T field
given a 1% perturbation at the laser ‘‘switch-on’’ time.
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kinetic modeling of which it was first observed [20]. In this
experiment, designed to measure the suppression of non-
local heat transport by magnetic fields, a nitrogen gas-jet
(atomic number Z ¼ 7), with electron number density
ne¼1:5�1019 cm�3 and initial temperature Te ¼ 20 eV,
was subject to inverse bremsstrahlung heating for 1 ns by a
long-pulse laser of wavelength 1054 nm and intensity
6:3� 1014 W cm�2. Uniform magnetic fields of strengths
up to 12 Twere imposed parallel to the laser-heating beam
and the radial heat-flow inferred. These parameters should
be assumed throughout.

Though the instability was originally observed in kinetic
simulations [20], no theory was derived and to this end a
classical transport model better elucidates the physics of
the problem. Data presented here are thus taken primarily
from our classical transport code CTC. Where appropriate,
however, we present results from our kinetic code IMPACT

[21] and from CTC+: a version of CTC which includes
hydrodynamic motion. For the conditions considered
here, simulation using CTC+ reveals that neither hydrody-
namics nor density gradients impact heavily on the insta-
bility (see Fig. 2), so that both effects are neglected in the
theory at this stage.

For consistency with Froula et al. [7], we focus on a two-
dimensional cross-section through a plasma perpendicular
to both the applied magnetic field and the laser-heating
beam. However, for simplicity we consider an x-y, rather
than r-� geometry, with a laser-heating strip resulting from
a heating operator _ULðxÞ in place of a circular laser spot.
We thus suppose a plasma with principal temperature
and magnetic field gradients along the x axis of the
system only. The magnetic field is applied parallel to the
z axis, i.e., B ¼ Bẑ, where B ¼ jBj, so that plasma scalar

quantities f and vector quantitiesA are such thatB � rf ¼
B �A ¼ 0. Snapshots of the instability in this geometry are
shown in Fig. 1.
Our transport code incorporates the full Braginskii model

with corrected coefficients [3,22,23]. However, the theory
presented here includes just the most important damping
terms, resistive and thermal diffusion, alongside the main
feedback terms describing the Nernst effect and Righi-
Leduc heat flow. The Ettingshausen term, which helps to
mitigate diffusive effects, is also retained. In this way, using
Braginskii’s expression for the electric field E and
Ampère’s Law to write the current as j ¼ ðr� BÞ=�0,
and by neglecting hydrodynamics and density gradients
(rne ¼ 0), the induction equation is
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Similarly, by neglecting Ohmic heating, using
Braginskii’s form for the heat flow q, and with a laser-
heating operator _ULðxÞ, the thermal-energy continuity
equation of our reduced model becomes
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�

þr �
�
Te

e�0
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In these equations e is the electronic charge, cB ¼
3

ffiffiffiffi
�

p
=4 is a dimensionless constant, and the thermal

collision time �T ¼ 4�v3
T=ni½Ze2=�0me�2 ln�ei is defined

by the thermal velocity vT ¼ ð2Te=meÞ1=2, the ion number
density ni � ne=Z and the Coulomb logarithm ln�ei � 8.
The transport coefficients—the resistivity �?, thermal
conductivity �?, Nernst, Ettingshausen, and Righi-Leduc
terms, �^, c ^, and �^ respectively—are dimensionless
functions of the atomic number Z and Hall parameter
	 ¼ !gcB�T only, where !g ¼ eB=me is the electron

gyrofrequency. These are calculated using polynomial fits
in the Lorentz approximation [22,23].
Taking zeroth order solutions to Eqs. (1) and (2) of

the form B ¼ B0ðx; tÞ and Te ¼ T0ðx; tÞ, we add wavelike
perturbations with wave number k and frequency ! at
an (anticlockwise) angle � to the x axis. In this way
we have Te ¼ T0 þ 
T and B ¼ B0 þ 
B, where 
T ¼

T0 expiðkxxþ kyy�!tÞ, 
B ¼ 
B0 expiðkxxþ kyy�
!tÞ, kx ¼ k cos�, ky ¼ k sin�, and 
T0, and 
B0 are

complex. Hence, by defining temperature and magnetic
field scale lengths LT ¼ T0=ð@T0=@xÞ and LB ¼
B0=ð@B0=@xÞ respectively, and assuming jkLT;Bj � 1
and jrð1=LT;BÞj & 1=L2

T;B, the first order forms of

Eqs. (1) and (2) yield a quadratic in ! and the dispersion
relation
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FIG. 2. The theoretical dispersion relation of our reduced
model—for a 6 T magnetized plasma at a distance x �
120 �m from the laser strip center after 500 ps of heating—
based on one-dimensional profiles taken from CTC (top plot,
solid line), CTC+ (top plot, dashed line) and IMPACT (bottom
plot). These may be compared with growth rates measured from
full two-dimensional simulations.
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!� ¼ 1
2fsBk� ðdR þ dTÞik2g � 1

2fs2Bk2 þ ½sP þ 2sB

� ðdR � dTÞ�ik3 � ½ðdR � dTÞ2 þ sE�k4g1=2: (3)

Here the additional d and s coefficients are defined in
terms of the mean free path �T ¼ �TvT and the skin depth


 ¼ c=!pe, where c is the speed of light and !pe ¼
ðe2ne=me�0Þ1=2 is the plasma frequency
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Note that dR and dT represent the coefficients for resis-
tive and thermal diffusion, respectively. The solution for
!þ yields unstable modes for a range of k up to a cutoff kc
with growth rates given by =f!þg (see Fig. 2), though the
local approximation subjects us to the additional restriction
j1=LT;Bj 	 jkj 	 1=�T .

Perturbations grow primarily as a result of interplay
between the Nernst effect and the Righi-Leduc heat-flow
in the sP source term in Eq. (3), yielding growth that goes

as k3=2; while the main damping terms in dR and dT are
proportional to k2, giving us the form of the dispersion
curve in Fig. 2 (the term in sB also contributes as a source,
but is not essential). The angular dependence of sB and sP
means that a y component to the perturbation is needed for
instability. In our simulations, and hereafter in this Letter,
we take � ¼ �=2, i.e., sin� ¼ 1. Feedback between the
Nernst and Ettingshausen effects, which goes like k2 and is
accounted for by sE, acts to reduce the impact of diffusion,
but cannot itself drive instability due to its equivalent
power in k. Thus, the instability is perhaps best understood
by assessing the phenomena in the principal source
term sP.

The effect of a temperature perturbation on an unper-
turbed magnetic field (B ¼ B0) may be considered by
examining the first order correction due to the Nernst
term in the induction equation:

�
@B

@t

�
Oð1Þ

�^
¼ �^

e
k2
Tei�: (4)

Hence, a magnetic field perturbation is induced in anti-
phase. Physically, this is a result of the compressional
aspect of Nernst advection. The Nernst velocity—the ve-
locity of advection—is proportional to �@Te=@y, so that
the magnetic field is compressed in the troughs of the
temperature perturbation and rarefacted at the peaks.

Similarly, we consider the impact of a magnetic field
perturbation on an unperturbed temperature profile
(@T0=@x < 0) using the first order correction due to the
Righi-Leduc term in the energy continuity equation:

�
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@t

�
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�^
/ @T0

@x

@�^
@	

k
Beið�=2Þ: (5)

For 	 greater than about 10�1 we have @�^=@	 < 0, in
which case the magnetic field perturbation will induce a
temperature perturbation that leads by �=2. This is due to
the dependence of �^ on 	, which is itself directly pro-
portional to B. Since @�^=@	 < 0, regions of higher mag-
netic field strength have a lower Righi-Leduc heat-flow, so
that heat is transported away from these regions more
slowly than those of lower B. Thus, as we move along
the positive y axis, thermal energy is built up in places
where heat flow goes from high to low and removed from
places where it goes from low to high. The reverse is found
if 	 is less than about 10�1, where @�^=@	 > 0.
The two stages of this feedback process result in induced

perturbations which have different phases. Magnetic field
perturbations will tend to ‘‘push’’ temperature perturba-
tions towards a phase difference of��=2 (sign identical to
that of ½@T0=@x�½@�^=@	�), while temperature perturba-
tions ‘‘pull’’ magnetic field perturbations towards a phase
of �. The net result of this ‘‘push-pull’’ interaction is that
perturbations propagate as waves with a phase difference
of� � 3�=4 and in the direction�ŷ (again, sign identical
to that of ½@T0=@x�½@�^=@	�).
The dependence of the d and s coefficients on T0ðx; tÞ

and B0ðx; tÞ means that the growth rate varies both tempo-
rally and spatially. Evaluation of the dispersion relation is
thus limited to a particular plasma cross section x and
based on a given snapshot of the bulk profile. When using
profiles taken from computational simulation of the experi-
ment of Froula et al. [7], the theoretical model and growth
rates measured from full heating simulations show good
agreement (see Fig. 2).
As indicated in Fig. 2, for the conditions considered here

hydrodynamics does not significantly affect the instability.
Nonlocal effects, on the other hand, which are relevant to
the experiment of Froula et al. [7], do reduce the predictive
power of the theory by modifying the transport coeffi-
cients; though the physical mechanism of the instability
remains the same. However, simulation using IMPACT (see
Fig. 2) shows that this reduction is not dramatic: the peak
wave number is effectively unchanged, while the cutoff
wave number and peak growth rate agree to within�35%.
Indeed, it is noteworthy that though growth rates measured
from kinetic simulations are lower than those predicted by
the theory, the different bulk profiles mean that rates are
approximately twice those taken from CTC and CTC+.
The cutoff wave number for unstable modes kc, calcu-

lated by solving =f!þg ¼ 0, may be expressed in terms of
the dimensionless parameters 	 and � ¼ ð�T=
Þ:

kcLT ¼ cB
3
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þ cB�?
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(6)

This equation makes clear the necessity of both
the Nernst effect and Righi-Leduc heat-flow in driving
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instability: without the former (�^ ¼ 0), kc becomes imag-
inary, and without the latter (@�^=@	 ¼ 0), kc is zero. It
also demonstrates how feedback between the Nernst and
Ettingshausen effects reduces the impact of the diffusive
term in �?�?—thus extending the range of instability.

No equivalent expression for the peak wave number
kM exists; however, for the experiment of Froula et al.
[7] we find js2B � ½ðdR � dTÞ2 þ sE�k2Mj � j½sP þ 2ðdR �
dTÞsB�kMj, so that the peak growth rate M and wave
number kM may be approximated by 0

M and k0M respec-
tively, where

0
M ¼ 1

2½sP þ 2ðdR � dTÞsB�1=2k0M ð3=2Þ � 1
2ðdR þ dTÞk0M 2

(7)

and

k0M ¼ 9
16½sP þ 2ðdR � dTÞsB�½dR þ dT��2: (8)

More precise values for both M and kM may be found
computationally under the assumption LT � �LB. Using
� ¼ 20 (characteristic for the experiment of Froula et al.
[7]) and by comparing these values with 0

M and k0M, we
find that the approximate expressions agree to within a
factor of 5 for 10�2 <	< 102.

To enable more qualitative discussion, we simplify fur-
ther by assuming no magnetic field gradients (LB ! 1),
so that sB ¼ 0, take � � maxf1; 	g, for which dT � dR,
and combine Eqs. (7) and (8) to express the peak growth
rate as 0

M ¼ ð3=8Þ3s2Pd�3
T , i.e., 0

M�T � ½ð�^�T=LTÞ�
ð@�^=@	Þ�2��3

? . Writing 0
M in this way emphasizes the

importance of steep temperature gradients, through 1=L2
T ,

and of intermediate Hall parameter, to allow significant
�2^ð@�^=@	Þ2=�3

?. More specifically, we require 	 in the

region of 10�2 to 102, but avoiding 	� 10�1 where
@�^=@	� 0. Furthermore, the dimensionless form indi-
cates relevance to other plasmas in self-similar regimes.

Under the conditions considered in this letter, the insta-
bility has growth rates of order 10 GHz, optimal wave-
lengths of�50 �m and can significantly disrupt magnetic
field and temperature profiles over nanosecond time scales
when compared to stable heating simulations. By concen-
trating the heat-flow in regions where the magnetic field is
rarefacted, the instability enhances the spread of thermal
energy (see Fig. 3).

To conclude, we have derived the linear theory for a new
plasma instability in magnetized plasmas, which predicts
propagating waves with growing amplitude for a range of
wave numbers, and have shown that this theory compares
well with simulation. Uniquely, the instability results
solely from feedback between collisional transport pro-
cesses, principally the Nernst effect and Righi-Leduc
heat flow; though further investigation of the effects of
hydrodynamics and nonlocal heat flow are key areas of
future work. The instability is likely to be important for
ICF (particularly hohlraum gas-fill conditions which are
similar to those considered here) and most likely MTF.
Furthermore, its existence highlights the necessity of
including the Nernst effect and Righi-Leduc heat-flow in

magneto-hydrodynamic models for any plasma of inter-
mediate magnetization.
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