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This Letter reports physical realization of acoustic metamaterials with anisotropic mass density. These

metamaterials consist of a superlattice of two fluidlike components radially periodic. Several structures

are spectroscopically characterized at large wavelengths (homogenization limit) by studying the acoustic

resonances existing in the circular cavity where they are embedded. This characterization method allows

us to extract the diagonal components of the sound speed tensor. Analytical expressions describing the

anisotropic behavior as a function of the corrugation parameter are also developed and their predictions

are in agreement with measurements.
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Acoustic metamaterials with anisotropic mass density
have increasing interest due to their necessity in the fabri-
cation of novel acoustic devices, especially for those pro-
posed within the framework of transformation acoustics
[1]. More specifically, cloaking shells [2], acoustic hyper-
lenses [3], or radial sonic crystals [4], among others,
require mass anisotropy for their realization. Though an-
isotropy is not a property of common fluids, it can be
obtained by using the metamaterial concept. It has been
demonstrated that fluid-fluid or fluid-solid periodic com-
posites of subwavelength dimensions behave as acoustic
materials with anisotropic mass density [5–8].

Most of the above mentioned devices have radial sym-
metry and, therefore, their mass density tensor is described
in polar coordinates by a diagonal tensor. Based on classi-
cal composite methods [9], a way to obtain this anisotropy
has been recently reported [10,11]. It was shown that a
multilayered cylindrical shell of two alternating homoge-
neous and isotropic fluid materials behaves, in the low
frequency limit, like a fluidlike material with a cylindri-
cally anisotropic mass density.

The problem of engineering cylindrically multilayered
fluid-fluid composite is still unsolved, due to the difficulty
in avoiding the mixing of fluid materials with different
physical parameters. By using the metamaterial concept,
the authors in Ref. [11] proposed a design of fluidlike
materials based on homogenization properties of solid
structures made of cylindrical scatterers [12]. A similar
approach was employed by Farhat et al. to realize a cloak
for surface waves in water [13]. However, a huge number
of cylinders was required for each layer. More recently,
Li and co-workers [3] have employed a fluid-solid multi-
layered structure to get a metamaterial with strongly an-
isotropic mass density. But this approach is not suitable to
get finite anisotropy ratios.

In this Letter we introduce physical realization and
experimental characterization of three acoustic metamate-
rials with anisotropic mass density. They are based on

multilayered structures made of two fluidlike materials
with different mass densities. Two main achievements are
here reported. The first one is to realize a stable 2D fluid-
fluid multilayered cylinder. The second one is to experi-
mentally demonstrate that, in the low frequency limit, it
behaves like an anisotropic fluidlike medium. This dem-
onstration has been performed by studying the cylinder’s
resonances.
The proposed 2D multilayered fluid-fluid structure is

obtained inside a planar wave guide made of aluminum,
where a circular cavity is drilled with an embedded corru-
gated structure, as shown in Fig. 1. In this cavity two
alternating regions of heights h1 and h2 and widths d1
and d2 are defined. This height discontinuity in a wave-
guide can be described, in a first approximation, by stating
that region 1 and 2 are two different fluids with the same
sound speed c1 ¼ c2 ¼ cb, where cb is the sound speed
in the background, and a mass density mismatch given
by [14]

�1

�2
¼ h2

h1
: (1)

This expression is valid only for the fundamental mode.
Although a more accurate description could be obtained by
considering the coupling through evanescent modes. For
the purposes of this work a simple approach based on
Eq. (1) will be sufficient.
Note that the multilayered structure considered here is

made of two alternating air regions of height h1 and h2. In
other words, the aluminum is used here just as a container
and, due to the huge impedance mismatch with air, no
sound propagation inside Al is considered.
The corrugated structure shown in Fig. 1 can be de-

scribed by a cylindrical periodic multilayer of two alter-
nating materials, where material 1(2) is a homogeneous
and isotropic fluid of width d1ðd2Þ and acoustic parameters
�1, B1ð�2; B2Þ, where �i and Bi are the density and
bulk modulus of material i i ¼ ð1; 2Þ, respectively. This
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structure behaves, in the low frequency limit, as an aniso-
tropic fluidlike material whose effective acoustic parame-
ters are given as follows [10,11]:

�r ¼ 1

d
½d1�1 þ d2�2� ¼ �1

d

�
d1 þ d2

h1
h2

�
; (2)

��1
� ¼ 1

d
½d1��1

1 þ d2�
�1
2 � ¼ ��1

1

d

�
d1 þ d2

h2
h1

�
; (3)

B�1 ¼ 1

d
½d1B�1

1 þ d2B
�1
2 � ¼ ��1

�

c2b
; (4)

where the last expression has been obtained by using Bi ¼
�ic

2
i and c1 ¼ c2 ¼ cb.
Sound propagation inside this medium is determined by

the radial component of the sound speed cr and the anisot-
ropy factor � obtained as follows

c2r � B=�r ¼ c2b
d2

½d1 þ d2
h1
h2
�½d1 þ d2

h2
h1
� (5)

�2 � �r�
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�
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h2

��
d1 þ d2

h2
h1

�
: (6)

From these relations the angular component of the sound
speed is trivially obtained,

c� ¼ �cr ¼ cb: (7)

This result can also be obtained from Eq. (4) and the
definition of c� in terms of the bulk modulus; i.e., c2� �
B=�� ¼ c2b. Note that this result is exact; that is, it does not
depend on the accuracy in the determination of the equiva-
lent density of regions 1 or 2.
The characterization of these structures is performed by

measuring the frequencies of the cavity’s resonances. By
assuming harmonic time dependency the pressure field, P,
inside a homogeneous and anisotropic cylinder, like in the
isotropic case [15], can be expressed in terms of Bessel
functions [16]

Pðr; �;�Þ ¼ X1
q¼0

AqJ�qð2��r=crÞ cosðq�þ�qÞ; (8)

where � is the linear frequency of the sound wave, Aq and

�q are integration constants.

This expression is used to obtain the cavity modes,
which are determined by the condition of rigid walls at
r ¼ R0 [15]

@P

@r
jr¼R0

¼ 0; (9)

which in this case leads to

J0q�ð2��qiR0=crÞ ¼ 0; i ¼ 0; 1; 2; � � � (10)

where J0xð�Þ stands for the derivative of the Bessel function
of real order x. The i subindex refers to the ith zero of
the corresponding Bessel function. In the present work
only fundamental resonances i ¼ 0 have been analyzed,
so that hereafter the subindex in �will give reference to the
q value.
For the case of mode q ¼ 0 Eq. (10) does not contain

any dependence on �, so that the only unknown of that
equation is cr, which is obtained from

cr ¼ 2��0R0=3:832; (11)

where 3.832 being the first zero of J00ð�Þ [17] and �0 is the

resonant frequency assigned to the q ¼ 0 mode.
Once cr is known the value of � is determined from the

q � 0 resonances. Obviously, if � is not known the zeros of
J�qð�Þ cannot be either; however, they can be obtained by

solving numerically the transcendental equation

fð�Þ � J0q�ð2��qR0=crÞ ¼ 0; (12)

which allows us to determine a set of values �q from the

measurement of the resonant frequencies �q.

FIG. 1 (color online). Upper panel: One of the four samples
built and characterized in the present work. The system of
grooves creates a periodic fluid-fluid composite. Lower panel:
Schematic view of the experimental set up. The loud speaker
excites a sound field inside the cavity formed by the aluminum
boundaries. The frequencies of the excited resonances are used
to determine de effective parameters of the metamaterial.
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Four samples were built and characterized by using the
procedure explained above. All the samples have the same
cavity radius R0 ¼ 52 mm, the same layer thicknesses
d1 ¼ 2 mm and d2 ¼ 4 mm, and the same height of region
2, h2 ¼ 7 mm. The only parameter that changes from
sample to sample is the height h1 of region 1, which takes
the values h1 ¼ 2, 3, 4, and 7 mm for the samples 1,2,3,
and 4, respectively. Note that the sample 4 has h1 ¼ h2 ¼
7 mm, which makes it an isotropic cylindrical cavity em-
ployed here to obtain the background speed of sound cb.

The experimental set up is shown in the lower panel of
Fig. 1: A loudspeaker excites a sound field inside the cavity
through a hole drilled on the upper tap. Two microphones
are placed to measure the excited field; Mic1 is located at
r ¼ 0 and Mic2 at r � 0.

The excited sound field is a band-limited white noise
covering the range 1.5 kHz up to 5.5 kHz, because
the fundamental resonances of the different samples are
expected in this frequency range. The fact that the larger
height is h2 ¼ 7 mm for all the samples grants no z
oscillations for propagating modes up to a frequency of
�c � 25 kHz, which is larger than the maximum working
frequency �max ¼ 5 kHz. Therefore, the problem can be
considered as two-dimensional.

Spectra are taken simultaneously in two points: One at
r ¼ 0 (Mic 1 in Fig. 1) and another at r � 0 (Mic 2).
The sound field measured at position r ¼ 0 is only due to
the contribution of the zeroth-order Bessel function,
because Jq�ð0Þ ¼ 0 for q � 0. However the sound field

recorded at position r � 0 contains all the multipolar

components; their symmetry can be easily determined for
low q as follows. Firstly, the symmetry is initially assumed
and the anisotropy factor � is computed with Eq. (12).
Since only three resonances are studied it is easy to check
experimentally the consistence of the initial guess by rotat-
ing the sample.
Figure 2 shows the spectra taken at r ¼ 0 for all the

samples. The peak frequency in the spectra allows the
determination of cr by means of Eq. (11). Their values
are given in the second column of Table I.
The spectra measured at r � 0 are shown in Fig. 3,

where the polar symmetry of each resonance is also in-
dicated. For a given frequency the trascendental Eq. (12) is
solved and the values obtained for �q are summarized

in Table I. Note that for a given sample, the �q values

obtained for resonances q ¼ 1, 2, 3 are almost the same.

1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

S
ou

nd
 In

te
ns

ity
 (

A
rb

itr
ar

y 
U

ni
ts

)

 

 

Frequency (Khz)

S 1
S 2
S 3
S 4

FIG. 2 (color online). Sound spectra measured by microphone
located at the center of the cavity (Mic 1 in Fig. 1) for all the
samples. The resonance only depend on the radial component of
the sound speed tensor cr, which is obtained from the frequency
at the resonant peak [see Eq. (11)].

TABLE I. Experimental values of the radial component of the
sound speed tensor cr and of the anisotropy factor �q obtained

for each sample. The q ¼ 1, 2, 3 index refers to the multipolar q
mode from which the anisotropy factor was obtained. The main
source of error in the parameter is the determination of the peak
frequency, for which a Lorenz shape was assumed for each
resonance.

Sample crðm=sÞ �1 �2 �3

1 230� 17 1:58� 0:15 1:50� 0:15 1:55� 0:14
2 273� 13 1:35� 0:13 1:3� 0:1 1:25� 0:12
3 298� 15 1:2� 0:1 1:15� 0:08 1:16� 0:09
4 341� 9 1 1 1

0

0.05

0.1

Sample 1

 

 

0

0.05

0.1

S
ou

nd
 In

te
ns

ity
 (

A
rb

itr
ar

y 
U

ni
ts

)

Sample 2

 

 

1.5 2 2.5 3 3.5 4 4.5
0

0.05

0.1
Sample 3

Frequency (KHz)

 

 
q=1 q=2

q=0 q=3

q=1
q=3

q=1

q=0
q=2 q=3

q=0,2

FIG. 3 (color online). Sound spectra measured by the micro-
phone located at r � 0 (Mic 2 in Fig. 1) for the three anisotropic
samples (samples 1 to 3 in Table I). The anisotropy factor � is
obtained from these spectra by solving Eq. (12). The multipolar
symmetry of each mode is also indicated.
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This result supports the model employed in this work,
showing that long wavelength sound propagation within
the cavity is described by Eq. (8) and, consequently, that
the effective medium is an anisotropic fluidlike medium.

Figure 4 summarizes the results obtained for the com-
ponents of the sound speed tensor relative to that of the
background and the anisotropy factor. This figure also
depicts the theoretical values given by the simple analytical
expressions in Eqs. (5)–(7). The experimental value of the
angular component of the sound speed has been deter-
mined by c� ¼ �cr.

It should be noted that the disagreement obtained be-
tween theory and experimental data for cr and � is mainly
due to the fact that the analytical model employed is very
simple and, as already has been pointed out, a better
agreement could be obtained by considering the interaction
between evanescent modes. A similar effect was previ-
ously discussed for two-dimensional structures [18,19].
Note, however, that the experimental value obtained for
c� strongly agrees with the theory, which establishes that it
has to be equal to that of the background. This agreement
has its origin in the fact that Eq. (7) is exact.

Results in Fig. 4 lead us to the conclusion that 2D
anisotropic fluidlike materials can be easily achieved by
using the method introduced here. Therefore, new ad-
vanced 2D acoustic devices based on these handmade
materials can be envisaged.

In summary, a feasible method to build and characterize
fluidlike cylinders with cylindrically anisotropic mass den-
sity has been presented. The fabrication method is based on
the idea that a corrugated structure with radial symmetry

can be described by a fluid-fluid multilayered structure
that, in the low frequency limit, behaves like fluidlike
cylinder with anisotropic mass density. The method of
characterization is based on the frequency resonances of
a 2D cylindrical acoustic cavity. With this setup two pa-
rameters of the media are directly obtained; the radial
speed of sound, cr, and the anisotropy factor �. From these
two parameters the angular speed of sound c� can also be
determined, so that the propagation of sound in this me-
dium is completely characterized.
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FIG. 4 (color online). Symbols with error bars represent ex-
perimental data for the components of the sound speed tensor
relative to that of the background (blue circles and green
squares) and the anisotropy factor (red circles). The lines de-
scribe the corresponding theoretical values given by the simple
model in Eqs. (5)–(7) [see text].
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